Portable motorized telescope system for wind turbine blades damage detection

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorCarnero, Alejandro
dc.contributor.authorMartín-Fernández, Cristian
dc.contributor.authorDíaz-Rodríguez, Manuel
dc.date.accessioned2024-09-26T07:56:26Z
dc.date.available2024-09-26T07:56:26Z
dc.date.issued2023
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.description.abstractWind turbines are among the fastest-growing sources of energy production and the maintenance operations include regular inspection of their blades, causing considerable downtime and cost. In addition, the manual inspection process involves a great risk. To address this challenge, in this article a preventive maintenance system for wind turbines based on deep computational learning techniques is presented. This open-source project aims to detect and classify possible surface damages on wind turbine blades to facilitate and improve the inspection of such infrastructures. The system consists of a stand-alone Android application that makes use of convolutional neural networks for image processing, a portable telescope to take precise photographs of the turbine blades, and a motorized mount that allows the movement of the telescope. The application tries to carry out a complete sweep of the surface of the wind turbine blades in an autonomous way based on the predictions of neural network models and finally presents the defects found to the user. Thanks to this, maintenance time would be reduced and the risk of manual intervention would be avoided. Accuracies of around 97% for label predictions and 90% for bounding box coordinate predictions have been achieved on the validation dataset. The proposed low-cost inspection system for detecting surface damages on blades has been experimentally validated in a real wind farm.es_ES
dc.description.sponsorship5G+TACTILE: Digital vertical twins for B5G/6G networks, Grant/Award Number: TSI-063000-2021-116; IntegraDos: Providing Real-Time Services for the Internet of Things through Cloud Sensor Integration, Grant/Award Number: PY20_00788; rFOG: Improving Latency and Reliability of Offloaded Computation to the FOG for Critical Services, Grant/Award Number: RT2018-099777-B-100; Wind Turbine Preventive Maintenance based on Deep Learning Techniques in the Fog, Grant/Award Number: UMA-CEIATECH-19es_ES
dc.identifier.citationCarnero, Alejandro, Cristian Martín, and Manuel Díaz. "Portable motorized telescope system for wind turbine blades damage detection." Engineering Reports (2023): e12618.es_ES
dc.identifier.doi10.1002/eng2.12618
dc.identifier.urihttps://hdl.handle.net/10630/33360
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectTurbinas eólicases_ES
dc.subject.otherwind turbineses_ES
dc.subject.otherdamage detectiones_ES
dc.subject.othermotorized telescopees_ES
dc.subject.othermachine learninges_ES
dc.titlePortable motorized telescope system for wind turbine blades damage detectiones_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationbf2870d3-5cc6-414d-8d71-60e242c18554
relation.isAuthorOfPublication87398907-4bbf-4287-8d0b-e2c84852c57f
relation.isAuthorOfPublication.latestForDiscoverybf2870d3-5cc6-414d-8d71-60e242c18554

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Engineering Reports - 2023 - Carnero - Portable motorized telescope system for wind turbine blades damage detection.pdf
Size:
5.35 MB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal

Collections