Robust computational intelligence techniques for visual information processing

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

2021-03-24

Authors

Thurnhofer-Hemsi, Karl

Collaborators

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

UMA Editorial

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

This Ph.D. thesis is about image processing by computational intelligence techniques. Firstly, a general overview of this book is carried out, where the motivation, the hypothesis, the objectives, and the methodology employed are described. The use and analysis of different mathematical norms will be our goal. After that, state of the art focused on the applications of the image processing proposals is presented. In addition, the fundamentals of the image modalities, with particular attention to magnetic resonance, and the learning techniques used in this research, mainly based on neural networks, are summarized. To end up, the mathematical framework on which this work is based on, 𝓁ₚ-norms, is defined. Three different parts associated with image processing techniques follow. The first non-introductory part of this book collects the developments which are about image segmentation. Two of them are applications for video surveillance tasks and try to model the background of a scenario using a specific camera. The other work is centered on the medical field, where the goal of segmenting diabetic wounds of a very heterogeneous dataset is addressed. The second part is focused on the optimization and implementation of new models for curve and surface fitting in two and three dimensions, respectively. The first work presents a parabola fitting algorithm based on the measurement of the distances of the interior and exterior points to the focus and the directrix. The second work changes to an ellipse shape, and it ensembles the information of multiple fitting methods. Last, the ellipsoid problem is addressed in a similar way to the parabola.

Description

The third part is exclusively dedicated to the super-resolution of Magnetic Resonance Images. In one of these works, an algorithm based on the random shifting technique is developed. Besides, we studied noise removal and resolution enhancement simultaneously. To end, the cost function of deep networks has been modified by different combinations of norms in order to improve their training. Finally, the general conclusions of the research are presented and discussed, as well as the possible future research lines that are able to make use of the results obtained in this Ph.D. thesis.

Bibliographic citation

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional