OFDM System Design for Measured Ultrasonic Underwater Channels
| dc.centro | E.T.S.I. Telecomunicación | es_ES |
| dc.contributor.author | Cobacho Ruiz, Pablo | |
| dc.contributor.author | Cañete-Corripio, Francisco Javier | |
| dc.contributor.author | Martos-Naya, Eduardo | |
| dc.contributor.author | Fernández-Plazaola, Unai | |
| dc.date.accessioned | 2025-07-31T10:58:59Z | |
| dc.date.available | 2025-07-31T10:58:59Z | |
| dc.date.issued | 2022-07-29 | |
| dc.departamento | Ingeniería de Comunicaciones | es_ES |
| dc.description.abstract | In this paper, we present the development of a multicarrier modulation system of low complexity for broadband underwater acoustic communications (UAC), whose frequency band is located in the ultrasonic range, specifically between 32 kHz and 128 kHz. Underwater acoustic channels are recognized among the most hostile communication channels due to their strong time and frequency selectivity and, hence, the design of high-performance systems is a challenge that is difficult to resolve at the present time with state-of-art technology. The aim of the proposed system is to reach a reasonable bit rate, between 40 and 50 Kbps, over these channels that allows, for instance, the transmission of video signals of limited quality. We describe an orthogonal frequency division multiplexing (OFDM) modem prototype with a parameter setting and design specifically adapted to the channel nature. For this purpose, actual measurements carried out at the Mediterranean sea, on shallow waters, have been used to evaluate the system performance and to optimize the design. A discussion on several modulations and OFDM configurations is presented that leads to the selection of differential and non-differential quadri-phase shift keying (QPSK) as good candidates depending on synchronization capabilities. | es_ES |
| dc.description.sponsorship | Junta de Andalucía | es_ES |
| dc.description.sponsorship | Fondo Europeos de Desarrollo Regional (FEDER) | es_ES |
| dc.identifier.citation | Cobacho-Ruiz, P.; Cañete, F.J.; Martos-Naya, E.; Fernández-Plazaola, U. OFDM System Design for Measured Ultrasonic Underwater Channels. Sensors 2022, 22, 5703. https://doi.org/10.3390/s22155703 | es_ES |
| dc.identifier.doi | 10.3390/s22155703 | |
| dc.identifier.uri | https://hdl.handle.net/10630/39602 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | MDPI | es_ES |
| dc.relation.projectID | info:eu-repo////UMA18-FEDERJA-085 | es_ES |
| dc.rights | Attribution 4.0 Internacional | |
| dc.rights.accessRights | open access | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject | Acústica submarina | es_ES |
| dc.subject.other | underwater acoustic communications | es_ES |
| dc.subject.other | OFDM | es_ES |
| dc.subject.other | coherent modulation | es_ES |
| dc.subject.other | differential modulation | es_ES |
| dc.subject.other | channel equalization | es_ES |
| dc.subject.other | multipath propagation | es_ES |
| dc.subject.other | channel sounding | es_ES |
| dc.subject.other | synchronization | es_ES |
| dc.title | OFDM System Design for Measured Ultrasonic Underwater Channels | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | VoR | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | a1148083-a211-45a1-b27c-471fdf30dc3f | |
| relation.isAuthorOfPublication | d1039a04-a518-4e2f-98fb-b666163fc459 | |
| relation.isAuthorOfPublication | d95f034e-65a1-48e3-94e8-913347b218a8 | |
| relation.isAuthorOfPublication.latestForDiscovery | a1148083-a211-45a1-b27c-471fdf30dc3f |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- sensors-22-OFDM System Design for Measured Ultrasonic.pdf
- Size:
- 4.47 MB
- Format:
- Adobe Portable Document Format
- Description:
- Artículo principal
Description: Artículo principal

