Evaluation of CNN architectures for gait recognition based on optical flow maps
| dc.centro | E.T.S.I. Informática | es_ES |
| dc.contributor.author | Castro, Francisco M. | |
| dc.contributor.author | Marín-Jiménez, Manuel J. | |
| dc.contributor.author | Guil-Mata, Nicolás | |
| dc.contributor.author | López-Tapia, S. | |
| dc.contributor.author | Pérez de la Blanca, N. | |
| dc.date.accessioned | 2017-10-06T10:32:10Z | |
| dc.date.available | 2017-10-06T10:32:10Z | |
| dc.date.created | 2017 | |
| dc.date.issued | 2017 | |
| dc.departamento | Arquitectura de Computadores | |
| dc.description.abstract | This work targets people identification in video based on the way they walk (\ie gait) by using deep learning architectures. We explore the use of convolutional neural networks (CNN) for learning high-level descriptors from low-level motion features (\ie optical flow components). The low number of training samples for each subject and the use of a test set containing subjects different from the training ones makes the search of a good CNN architecture a challenging task. | es_ES |
| dc.description.sponsorship | Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech | es_ES |
| dc.identifier.orcid | http://orcid.org/orcid.org/0000-0003-3431-6516 | es_ES |
| dc.identifier.uri | http://hdl.handle.net/10630/14592 | |
| dc.language.iso | eng | es_ES |
| dc.relation.eventdate | 21 y 22 de septiembre de 2017 | es_ES |
| dc.relation.eventplace | Darmstadt, Germany | es_ES |
| dc.relation.eventtitle | BioSig 2017 | es_ES |
| dc.rights | by-nc-nd | |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Identificación | es_ES |
| dc.subject.other | CNN | es_ES |
| dc.subject.other | Flow maps | es_ES |
| dc.subject.other | Biometrics | es_ES |
| dc.title | Evaluation of CNN architectures for gait recognition based on optical flow maps | es_ES |
| dc.type | conference output | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | bed8ca48-652e-4212-8c3c-05bfdc85a378 | |
| relation.isAuthorOfPublication.latestForDiscovery | bed8ca48-652e-4212-8c3c-05bfdc85a378 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Gait_Arch_Comp_BIOSIG2017.pdf
- Size:
- 3.5 MB
- Format:
- Adobe Portable Document Format

