Optimized bifunctional CuNiMgAl catalysts for efficient synthesis of the renewable bioproduct glycerol carbonate

dc.centroFacultad de Cienciases_ES
dc.contributor.authorArgüello, Dalma S.
dc.contributor.authorBarroso-Martín, Isabel
dc.contributor.authorBálsamo, Nancy F.
dc.contributor.authorEimer, Griselda A.
dc.contributor.authorCrivello, Mónica E.
dc.contributor.authorRodríguez-Castellón, Enrique
dc.date.accessioned2025-07-28T10:56:00Z
dc.date.available2025-07-28T10:56:00Z
dc.date.issued2025
dc.departamentoQuímica Inorgánica, Cristalografía y Mineralografíaes_ES
dc.description.abstractThis paper presents a novel technology for converting glycerol, a byproduct of the biodiesel industry, into glycerol carbonate, a high-value bioproduct. The effect of calcination temperature on the synthesis of quaternary Cu-Ni-Mg-Al catalysts (MMO-Cu15Ni15-Tz) and their application in the transesterification reaction was investigated. Glycerol conversion remained largely unaffected by calcination temperature; however, selectivity toward glycerol carbonate was influenced. Physicochemical analyses showed increased crystallinity and spinel phase formation with higher calcination temperatures, resulting in lower oxide dispersion and decreased specific surface area. Nonetheless, the preservation of nanolayer morphology and increased pore diameter maintained high conversion rates at elevated temperatures. X-ray photoelectron spectroscopy (XPS) confirmed Cu2+ interactions with the MgAl matrix and the formation of a solid solution. Ultraviolet-visible diffuse reflectance (UV-visible DR) spectroscopy indicated the dominance of octahedrally coordinated Cu2+ and spinel phases at the highest temperature. The MMO-Cu15Ni15-T450 catalyst exhibited the highest concentration of strong basic sites and the lowest concentration of very strong basic sites. Acid–base characterization suggested that very strong basic sites and abundant acid sites promote glycidol formation by glycerol carbonate decarboxylation. Calcination at 450 °C was identified as optimal, maximizing glycerol carbonate yield while minimizing byproduct formation. This work supports a biorefinery approach aligned with circular economy principles to reduce the environmental impact of biodiesel production through the use of cost-effective catalysts and efficient processes.es_ES
dc.identifier.citationArgüello, D.S., Barroso-Martín, I., Bálsamo, N.F., Eimer, G.A., Crivello, M.E. and Rodríguez-Castellón, E. (2025), Optimized bifunctional CuNiMgAl catalysts for efficient synthesis of the renewable bioproduct glycerol carbonate. Biofuels, Bioprod. Bioref.. https://doi.org/10.1002/bbb.70008es_ES
dc.identifier.doi10.1002/bbb.70008
dc.identifier.urihttps://hdl.handle.net/10630/39538
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.relation.projectIDFunding for open access charge: Universidad de Málaga / CBUAes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectProductos biológicoses_ES
dc.subjectEnergía de biomasaes_ES
dc.subject.otherGlyceroles_ES
dc.subject.otherBioproductes_ES
dc.subject.otherGlycerol carbonatees_ES
dc.subject.otherHeterogeneous catalysises_ES
dc.subject.otherMixed oxideses_ES
dc.subject.otherTransesterificationes_ES
dc.titleOptimized bifunctional CuNiMgAl catalysts for efficient synthesis of the renewable bioproduct glycerol carbonatees_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationd36db68a-f183-488d-94e0-fd0dc5e4a311
relation.isAuthorOfPublication.latestForDiscoveryd36db68a-f183-488d-94e0-fd0dc5e4a311

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Biofuels Bioprod Bioref - 2025 - Argüello - Optimized bifunctional CuNiMgAl catalysts for efficient synthesis of the.pdf
Size:
3.07 MB
Format:
Adobe Portable Document Format
Description:

Collections