AC Electrokinetic of Salt-Free Multilayered Polymer-Grafted Particles.

Loading...
Thumbnail Image

Files

polymers-12-02097.pdf (4.39 MB)

Description: Artículo principal

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

Interest in the electrical properties of the interface between soft (or polymer-grafted) nanoparticles and solutions is considerable. Of particular significance is the case of polyelectrolyte-coated particles, mainly taking into account that the layer-by-layer procedure allows the control of the thickness and permeability of the layer, and the overall charge of the coated particle. Like in simpler systems, electrokinetic determinations in AC fields (including dielectric dispersion in the 1 kHz–1 MHz frequency range and dynamic electrophoresis by electroacoustic methods in the 1–18 MHz range) provide a large amount of information about the physics of the interface. Different models have dealt with the electrokinetics of particles coated by a single polymer layer, but studies regarding multi-layered particles are far scarcer. This is even more significant in the case of so-called salt-free systems; ideally, the only charges existing in this case consist of the charge in the layer(s) and the core particle itself, and their corresponding countercharges, with no other ions added. The aims of this paper are as follows: (i) the elaboration of a model for the evaluation of the electrokinetics of multi-grafted polymer particles in the presence of alternating electric fields, in dispersion media where no salts are added; (ii) to carry out an experimental evaluation of the frequency dependence of the dynamic (or AC) electrophoretic mobility and the dielectric permittivity of suspensions of polystyrene latex spherical particles coated with successive layers of cationic, anionic, and neutral polymers; and (iii) finally, to perform a comparison between predictions and experimental results, so that it can be demonstrated that the electrokinetic analysis is a useful tool for the in situ characterization of multilayered particles.

Description

Bibliographic citation

Ahualli, S.; Bermúdez, S.; Carrique, F.; Jiménez, M.L.; Delgado, Á.V. AC Electrokinetics of Salt-Free Multilayered Polymer-Grafted Particles. Polymers 2020, 12, 2097. https://doi.org/10.3390/polym12092097

Collections

Endorsement

Review

Supplemented By

Referenced by