Prescriptive Analytics in Electricity Markets

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Authors

Muñoz Díaz, Miguel Ángel

Collaborators

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

UMA Editorial

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

Decision making is critical for any business to survive in a market environment. Examples of decision making tasks are inventory management, resource allocation or portfolio selection. Optimization, understood as the scientific discipline that studies how to solve mathematical programming problems, can help make more efficient decisions in many of these situations. Particularly relevant, because of their frequency and difficulty, are those decisions affected by uncertainty, i.e., in which some of the parameters that precisely determine the optimization problem are unknown when the decision must be made. Fortunately, the development of information technologies has led to an explosion in the availability of data that can be used to assist decisions affected by uncertainty. However, most of the available historical data do not correspond to the unknown parameter of the problem but originate from other related sources. This subset of data, potentially valuable for obtaining better decisions, is called contextual information. This thesis is framed within a new scientific effort that seeks to exploit the potential of data and, in particular, of contextual information in decision making. To this end, in this thesis, we have developed mathematical frameworks and data-driven optimization models that exploit contextual information to make better decisions in problems characterized by the presence of uncertain parameters.

Description

Electricity markets are a clear example of a sector in which decision making plays a crucial role in its daily activity. Moreover, uncertainty is intrinsic to electricity markets and affects most of the tasks that agents operating in them must carry out. Many of these tasks involve decisions characterized by low risk and being addressed periodically. In this thesis, we refer to these tasks as iterative decisions. This thesis applies the aforementioned innovative frameworks for decision making under uncertainty using contextual information in iterative decision making tasks faced daily by electricity market agents.

Bibliographic citation

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional