Diradicals and their driving forces

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

Several series of aromatic and quinoidal compounds, such as oligothiophenes (Scheme 1), oligophenylene-vinylenes, oligoperylenes (oligophenyls) and graphene nanoribbon derivatives, are studied in the common context of the capability to stabilize diradical structures. [1,2,3,4]. In this work, we try to clarify how several driving forces (i.e., thermodynamic and entropic) are responsible for the generation of diradical and diradicaloid structures. A combination of different types of molecular spectroscopies (i.e., electronic absorption, electronic emission, excited state absorption, vibrational Raman, vibrational infrared, etc.) as well as hybridized with thermal and pressure-dependent techniques are shown to provide important information about the origin of the formation and stabilization of diradicals. From a conceptual point of view, we analyze these properties in the context of the oligomer approach which is the study of the evolution of these spectroscopic quantities as a function of the oligomer size. References [1] P. Mayorga Burrezo, J.L. Zafra, J. Casado. Angew. Chem. Int. Ed., 2017, 56, 2250. [2] J. Casado, R. Ponce Ortiz, J. T. Lopez Navarrete, Chem. Soc. Rev. 2012, 41, 5672. [3] P. Mayorga Burrezo, X. Zhu, S. F. Zhu, Q. Yan, J. T. Lopez Navarrete, H. Tsuji, E. Nakamura, J. Casado, J. Am. Chem. Soc. 2015, 137, 3834-3843. [4] J. Casado, Para-quinodimethanes: A unified review of the quinoidal-versus-aromatic competition and its implications. Top. Curr. Chem. 2017, 375, 73.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Atribución 4.0 Internacional