Ranking Information Extracted from Uncertainty Quantification of the Prediction of a Deep Learning Model on Medical Time Series Data

dc.contributor.authorStoean, Ruxandra
dc.contributor.authorStoean, Catalin
dc.contributor.authorAtencia-Ruiz, Miguel Alejandro
dc.contributor.authorRodríguez-Labrada, Roberto
dc.contributor.authorJoya-Caparrós, Gonzalo
dc.date.accessioned2026-01-12T11:07:49Z
dc.date.available2026-01-12T11:07:49Z
dc.date.issued2020-07-02
dc.description.abstractUncertainty quantification in deep learning models is especially important for the medical applications of this complex and successful type of neural architectures. One popular technique is Monte Carlo dropout that gives a sample output for a record, which can be measured statistically in terms of average probability and variance for each diagnostic class of the problem. The current paper puts forward a convolutional–long short-term memory network model with a Monte Carlo dropout layer for obtaining information regarding the model uncertainty for saccadic records of all patients. These are next used in assessing the uncertainty of the learning model at the higher level of sets of multiple records (i.e., registers) that are gathered for one patient case by the examining physician towards an accurate diagnosis. Means and standard deviations are additionally calculated for the Monte Carlo uncertainty estimates of groups of predictions. These serve as a new collection where a random forest model can perform both classification and ranking of variable importance. The approach is validated on a real-world problem of classifying electrooculography time series for an early detection of spinocerebellar ataxia 2 and reaches an accuracy of 88.59% in distinguishing between the three classes of patients.es_ES
dc.description.sponsorshipMinisterio de Ciencia e Innovación. Plan Estatal de Investigación Científica y Técnica y de Innovaciónes_ES
dc.identifier.citationStoean, R., Stoean, C., Atencia, M., Rodríguez-Labrada, R., & Joya, G. (2020). Ranking Information Extracted from Uncertainty Quantification of the Prediction of a Deep Learning Model on Medical Time Series Data. Mathematics, 8(7), 1078es_ES
dc.identifier.doi10.3390/math8071078
dc.identifier.urihttps://hdl.handle.net/10630/41428
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectAnálisis de series temporaleses_ES
dc.subjectAnálisis de series temporaleses_ES
dc.subjectInformática médica
dc.subject.otherDeep Learninges_ES
dc.subject.otherTime serieses_ES
dc.subject.otherUncertainty quantificationes_ES
dc.subject.otherMonte Carlo dropoutes_ES
dc.subject.otherRandom Forestes_ES
dc.titleRanking Information Extracted from Uncertainty Quantification of the Prediction of a Deep Learning Model on Medical Time Series Dataes_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication95963a23-8000-45d2-82c7-31a690f38a5b
relation.isAuthorOfPublication39cdaa1a-9f58-44de-a638-781ee086cd05
relation.isAuthorOfPublication.latestForDiscovery95963a23-8000-45d2-82c7-31a690f38a5b

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematics-08-01078-v2.pdf
Size:
876.44 KB
Format:
Adobe Portable Document Format
Description:

Collections