The Fibonacci sequence in the description of maximal discrete Archimedean t-norms.

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Center

Department/Institute

Abstract

There are many arguments for counting with more than two “truth values”; this allows to imitate human reasoning of facts which are not binary. For theoretical reasons, it is natural to use the whole real interval as the scale. However, this brings practical problems: it is difficult, and even impossible, to represent exact values. Often only a small scale of values suffices to express what we need. Therefore, finite chains are frequently used as domains of fuzzy logical operations. Their representation and manipulation are easy. In this paper, we focus on triangular norms (t-norms). The choice of a finite domain admits some operations (Gödel, Łukasiewicz), while it excludes others (all strict ones, including the product). A disadvantage of the Gödel (minimum) t-norm is that repetition of arguments does not change their meaning. This is often desirable to emphasize the statement. (“Words, words, words!”) Thus we do not consider the Gödel operations sufficient for representation of all fuzzy logical statements in human reasoning. of the volume of its 5-dimensional domain; in its discrete versions, nonzero results are even more rare. Thus we are interested in Archimedean t-norms with values “as large as possible”, here in the maximal Archimedean t-norms (=those which are not majorized by other Archimedean t-norms). It was shown in previous works that there is an abundance of discrete t-norms; their number grows fast with the number of elements of the underlying chain (no exponential bound seems to be known). There is also an abundance of Archimedean t-norms. In contrast to that, when we counted the number of maximal Archimedean t-norms, it grows asymptotically exponentially with a mild base.

Description

Bibliographic citation

Bejines, C., & Navara, M. (2022). The Fibonacci sequence in the description of maximal discrete Archimedean t-norms. Fuzzy Sets and Systems, 451, 94–112.

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Atribución 4.0 Internacional