Variable order, directional H2-matrices for Helmholtz problems with complex frequency

dc.centroFacultad de Cienciases_ES
dc.contributor.authorBoerm, Steffen
dc.contributor.authorLópez-Fernández, María
dc.contributor.authorSauter, Stefan
dc.date.accessioned2026-01-13T13:22:02Z
dc.date.available2026-01-13T13:22:02Z
dc.date.issued2021-10
dc.departamentoAnálisis Matemático, Estadística e Investigación Operativa y Matemática Aplicadaes_ES
dc.descriptionhttps://openpolicyfinder.jisc.ac.uk/id/publication/602?from=single_hites_ES
dc.description.abstractThe sparse approximation of high-frequency Helmholtz-type integral operators has many important physical applications such as problems in wave propagation and wave scattering. The discrete system matrices are huge and densely populated; hence, their sparse approximation is of outstanding importance. In our paper, we will generalize the directional-matrix techniques from the ‘pure’ Helmholtz operator with a purely imaginay frequency to general complex frequencies with non negative real part. In this case, the fundamental solution decreases exponentially for large arguments. We will develop a new admissibility condition that contains the real part of the frequency in an explicit way, and introduces the approximation of the integral kernel function on admissible blocks in terms of frequency-dependent directional expansion functions. We develop an error analysis that is explicit with respect to the expansion order and with respect to both the real and the imaginary part of the frequency. This allows for choosing the variable expansion order in a quasi-optimal way. The complexity analysis shows how higher values of the real part of the frequency reduce the complexity. In certain cases, it even turns out that the discrete matrix can be replaced by its nearfield part. Numerical experiments illustrate the sharpness of the derived estimates and the efficiency of our sparse approximation.es_ES
dc.identifier.citationSteffen Börm, Maria Lopez-Fernandez, Stefan A Sauter, Variable order, directional ℋ2-matrices for Helmholtz problems with complex frequency, IMA Journal of Numerical Analysis, Volume 41, Issue 4, October 2021, Pages 2896–2935, https://doi.org/10.1093/imanum/draa046es_ES
dc.identifier.doi10.1093/imanum/draa046
dc.identifier.urihttps://hdl.handle.net/10630/41497
dc.language.isoenges_ES
dc.publisherOxford University Presses_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectMatrices (Matemáticas)es_ES
dc.subjectOperadores integraleses_ES
dc.subject.otherHelmholtz equation in lossy mediaes_ES
dc.subject.otherhierarchical matriceses_ES
dc.subject.otherboundary integral operatores_ES
dc.titleVariable order, directional H2-matrices for Helmholtz problems with complex frequencyes_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication8c895330-9e70-405d-a751-00fe60ba91e4
relation.isAuthorOfPublication.latestForDiscovery8c895330-9e70-405d-a751-00fe60ba91e4

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gcq_dm_stas_04062020.pdf
Size:
4.22 MB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal

Collections