Singular adaptations in the carbon assimilation mechanism of the polyextremophile cyanobacterium Chroococcidiopsis thermalis

dc.centroFacultad de Cienciases_ES
dc.contributor.authorAguiló-Nicolau, Pere
dc.contributor.authorGalmés, Jeroni
dc.contributor.authorFais, Giacomo
dc.contributor.authorCapó-Bauçà, Sebastià
dc.contributor.authorCao, Giacomo
dc.contributor.authorÍñiguez Moreno, Concepción
dc.date.accessioned2024-10-02T06:43:34Z
dc.date.available2024-10-02T06:43:34Z
dc.date.issued2023
dc.departamentoEcología y Geología
dc.description.abstractCyanobacteria largely contribute to the biogeochemical carbon cycle fixing ~ 25% of the inorganic carbon on Earth. However, the carbon acquisition and assimilation mechanisms in Cyanobacteria are still underexplored regardless of being of great importance for shedding light on the origins of autotropism on Earth and providing new bioengineering tools for crop yield improvement. Here, we fully characterized these mechanisms from the polyextremophile cyanobacterium Chroococcidiopsis thermalis KOMAREK 1964/111 in comparison with the model cyanobacterial strain, Synechococcus sp. PCC6301. In particular, we analyzed the Rubisco kinetics along with the in vivo photosynthetic CO2 assimilation in response to external dissolved inorganic carbon, the effect of CO2 concentrating mechanism (CCM) inhibitors on net photosynthesis and the anatomical particularities of their carboxysomes when grown under either ambient air (0.04% CO2) or 2.5% CO2-enriched air. Our results show that Rubisco from C. thermalis possess the highest specificity factor and carboxylation efficiency ever reported for Cyanobacteria, which were accompanied by a highly effective CCM, concentrating CO2 around Rubisco more than 140-times the external CO2 levels, when grown under ambient CO2 conditions. Our findings provide new insights into the Rubisco kinetics of Cyanobacteria, suggesting that improved Sc/o values can still be compatible with a fast-catalyzing enzyme. The combination of Rubisco kinetics and CCM effectiveness in C. thermalis relative to other cyanobacterial species might indicate that the co-evolution between Rubisco and CCMs in Cyanobacteria is not as constrained as in other phylogenetic groups.es_ES
dc.identifier.citationAguiló-Nicolau, P., Galmés, J., Fais, G. et al. (2023). Singular adaptations in the carbon assimilation mechanism of the polyextremophile cyanobacterium Chroococcidiopsis thermalis. Photosynth Res 156, 231–245. https://doi.org/10.1007/s11120-023-01008-yes_ES
dc.identifier.doi10.1007/s11120-023-01008-y
dc.identifier.urihttps://hdl.handle.net/10630/34160
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEnzimas - Cinéticaes_ES
dc.subjectCianobacterias - Biotecnologíaes_ES
dc.subjectCarbono - Fijaciónes_ES
dc.subject.otherCyanobacteriaes_ES
dc.subject.otherRubiscoes_ES
dc.subject.otherCO2 concentrating mechanismses_ES
dc.subject.otherCO2 fixationes_ES
dc.subject.otherPhotosynthesises_ES
dc.titleSingular adaptations in the carbon assimilation mechanism of the polyextremophile cyanobacterium Chroococcidiopsis thermalises_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Aguilo Nicolau et al 2023.pdf
Size:
2.29 MB
Format:
Adobe Portable Document Format
Description:
Published Article
Download

Description: Published Article

Collections