Observations in using parallel and sequential evolutionary algorithms for automatic software testing

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorAlba-Torres, Enrique
dc.contributor.authorChicano-García, José-Francisco
dc.date.accessioned2014-10-01T08:08:12Z
dc.date.available2014-10-01T08:08:12Z
dc.date.issued2014-10-01
dc.departamentoLenguajes y Ciencias de la Computación
dc.descriptionComputers & Operations Research, 35 (10),2007, pp.3161-3183es_ES
dc.description.abstractIn this paper we analyze the application of parallel and sequential evolutionary algorithms (EAs) to the automatic test data generation problem. The problem consists of automatically creating a set of input data to test a program. This is a fundamental step in software development and a time consuming task in existing software companies. Canonical sequential EAs have been used in the past for this task. We explore here the use of parallel EAs. Evidence of greater efficiency, larger diversity maintenance, additional availability of memory/CPU, and multi-solution capabilities of the parallel approach, reinforce the importance of the advances in research with these algorithms. We describe in this work how canonical genetic algorithms (GAs) and evolutionary strategies (ESs) can help in software testing, and what the advantages are (if any) of using decentralized populations in these techniques. In addition, we study the influence of some parameters of the proposed test data generator in the results. For the experiments we use a large benchmark composed of twelve programs that includes fundamental algorithms in computer science.es_ES
dc.description.sponsorshipMinistry of Education and Science and FEDER under Contract TIN2005-08818-C04-01 (the OPLINK Project). Francisco Chicano was supported by a Grant (BOJA 68/2003) from the Junta de Andalucía (Spain).es_ES
dc.identifier.otherDOI: 10.1016/j.cor.2007.01.016
dc.identifier.urihttp://hdl.handle.net/10630/8146
dc.language.isoenges_ES
dc.rights.accessRightsopen access
dc.subjectComputación evolutivaes_ES
dc.subject.otherSoftware testinges_ES
dc.subject.otherEvolutionary algorithmses_ES
dc.subject.otherEvolutionary testinges_ES
dc.subject.otherParallel evolutionary algorithmses_ES
dc.titleObservations in using parallel and sequential evolutionary algorithms for automatic software testinges_ES
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicatione8596ab5-92f0-420d-a394-17d128c965da
relation.isAuthorOfPublication6f65e289-6502-4756-871c-dbe0ca9be545
relation.isAuthorOfPublication.latestForDiscoverye8596ab5-92f0-420d-a394-17d128c965da

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
testing-cor-sbse.pdf
Size:
391.34 KB
Format:
Adobe Portable Document Format

Collections