Unravelling Crystal Superstructures and Transformations in the La6−xMoO12−δ (0.6 ≤ x ≤ 3.0) Series: A System with Tailored Ionic/ Electronic Conductivity.

Research Projects

Organizational Units

Journal Issue

Abstract

Crystalline La6−xMoO12−δ materials with different lanthanum/molybdenum ratios (0.6 ≤ x ≤ 3.0) have been prepared via a freeze-drying precursor route. The influence of the lanthanum content, sintering temperature, and cooling rate on the phase existence range and polymorphism was evaluated. Lanthanum-rich compounds present three different polymorphs: a cubic (disordered) fluorite and two complex rhombohedral superstructures related to the fluorite. For the first time, the structural resolution of these rhombohedral superstructures, 7 × 7 × 1 and 5 × 5 × 1, has been successfully accomplished by neutron powder diffraction and transmission electron microscopy studies. As the La/Mo ratio decreases, the cubic symmetry is stabilized, although a phase transformation from cubic to monoclinic occurs at a low cooling rate. Impedance spectroscopy measurements under different atmospheres (dry and wet N2 and 5% H2−Ar) show that all materials exhibit mixed proton−electronic conductivity. The n-type electronic conductivity is attributed to Mo6+ reduction and increases for those phases with lower lanthanum content, i.e., for quenched samples, from 5 mS cm−1 for La5.4MoO11.1 to 9.5 mS cm−1 for La4MoO9 at 700 °C in very reducing and wet conditions, which are significantly better than the values published to date for mixed lanthanum tungstates/ molybdates. This makes these materials potential candidates for hydrogen separation membranes.

Description

Bibliographic citation

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional