Time Series Clustering with Deep Reservoir Computing

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorAtencia-Ruiz, Miguel Alejandro
dc.contributor.authorGallicchio, Claudio
dc.contributor.authorJoya-Caparrós, Gonzalo
dc.contributor.authorMicheli, Alessio
dc.date.accessioned2021-07-14T07:56:18Z
dc.date.available2021-07-14T07:56:18Z
dc.date.created2021
dc.date.issued2020
dc.departamentoMatemática Aplicada
dc.description.abstractThis paper proposes a method for clustering of time series, based upon the ability of deep Reservoir Computing networks to grasp the dynamical structure of the series that is presented as input. A standard clustering algorithm, such as k-means, is applied to the network states, rather than the input series themselves. Clustering is thus embedded into the network dynamical evolution, since a clustering result is obtained at every time step, which in turn serves as initialisation at the next step. We empirically assess the performance of deep reservoir systems in time series clustering on benchmark datasets, considering the influence of crucial hyperparameters. Experimentation with the proposed model shows enhanced clustering quality, measured by the silhouette coefficient, when compared to both static clustering of data, and dynamic clustering with a shallow network.es_ES
dc.identifier.citationAtencia M., Gallicchio C., Joya G., Micheli A. (2020) Time Series Clustering with Deep Reservoir Computing. In: Farkaš I., Masulli P., Wermter S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science, vol 12397. Springer, Cham. https://doi.org/10.1007/978-3-030-61616-8_39es_ES
dc.identifier.urihttps://hdl.handle.net/10630/22641
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.eventdateSeptiembre 2020es_ES
dc.relation.eventplaceBratislava, Eslovaquiaes_ES
dc.relation.eventtitle29th International Conference on Artificial Neural Networks (ICANN 2020)es_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectAnálisis cluster -- Programas de ordenadores_ES
dc.subject.otherClusteres_ES
dc.subject.otherEcho State Networkses_ES
dc.subject.otherClusteringes_ES
dc.subject.otherReservoir Computinges_ES
dc.titleTime Series Clustering with Deep Reservoir Computinges_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication95963a23-8000-45d2-82c7-31a690f38a5b
relation.isAuthorOfPublication39cdaa1a-9f58-44de-a638-781ee086cd05
relation.isAuthorOfPublication.latestForDiscovery95963a23-8000-45d2-82c7-31a690f38a5b

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Clustering_with_Deep_RC.pdf
Size:
670.27 KB
Format:
Adobe Portable Document Format
Description:
Preprint
Download

Description: Preprint