Time Series Clustering with Deep Reservoir Computing
| dc.centro | Escuela de Ingenierías Industriales | es_ES |
| dc.contributor.author | Atencia-Ruiz, Miguel Alejandro | |
| dc.contributor.author | Gallicchio, Claudio | |
| dc.contributor.author | Joya-Caparrós, Gonzalo | |
| dc.contributor.author | Micheli, Alessio | |
| dc.date.accessioned | 2021-07-14T07:56:18Z | |
| dc.date.available | 2021-07-14T07:56:18Z | |
| dc.date.created | 2021 | |
| dc.date.issued | 2020 | |
| dc.departamento | Matemática Aplicada | |
| dc.description.abstract | This paper proposes a method for clustering of time series, based upon the ability of deep Reservoir Computing networks to grasp the dynamical structure of the series that is presented as input. A standard clustering algorithm, such as k-means, is applied to the network states, rather than the input series themselves. Clustering is thus embedded into the network dynamical evolution, since a clustering result is obtained at every time step, which in turn serves as initialisation at the next step. We empirically assess the performance of deep reservoir systems in time series clustering on benchmark datasets, considering the influence of crucial hyperparameters. Experimentation with the proposed model shows enhanced clustering quality, measured by the silhouette coefficient, when compared to both static clustering of data, and dynamic clustering with a shallow network. | es_ES |
| dc.identifier.citation | Atencia M., Gallicchio C., Joya G., Micheli A. (2020) Time Series Clustering with Deep Reservoir Computing. In: Farkaš I., Masulli P., Wermter S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science, vol 12397. Springer, Cham. https://doi.org/10.1007/978-3-030-61616-8_39 | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10630/22641 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Springer | es_ES |
| dc.relation.eventdate | Septiembre 2020 | es_ES |
| dc.relation.eventplace | Bratislava, Eslovaquia | es_ES |
| dc.relation.eventtitle | 29th International Conference on Artificial Neural Networks (ICANN 2020) | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Análisis cluster -- Programas de ordenador | es_ES |
| dc.subject.other | Cluster | es_ES |
| dc.subject.other | Echo State Networks | es_ES |
| dc.subject.other | Clustering | es_ES |
| dc.subject.other | Reservoir Computing | es_ES |
| dc.title | Time Series Clustering with Deep Reservoir Computing | es_ES |
| dc.type | conference output | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 95963a23-8000-45d2-82c7-31a690f38a5b | |
| relation.isAuthorOfPublication | 39cdaa1a-9f58-44de-a638-781ee086cd05 | |
| relation.isAuthorOfPublication.latestForDiscovery | 95963a23-8000-45d2-82c7-31a690f38a5b |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Clustering_with_Deep_RC.pdf
- Size:
- 670.27 KB
- Format:
- Adobe Portable Document Format
- Description:
- Preprint
Description: Preprint

