Fisher Motion Descriptor for Multiview Gait Recognition.

dc.contributor.authorCastro, Francisco M.
dc.contributor.authorMarín Jiménez, Manuel Jesús
dc.contributor.authorGuil-Mata, Nicolás
dc.contributor.authorMuñoz-Salinas, Rafael
dc.date.accessioned2024-09-20T09:03:22Z
dc.date.available2024-09-20T09:03:22Z
dc.date.issued2017
dc.departamentoArquitectura de Computadores
dc.descriptionPolítica de acceso abierto tomada de: https://v2.sherpa.ac.uk/id/publication/9703es_ES
dc.description.abstractThis paper aims to identify individuals by analyzing their gait using motion descriptors based on densely sampled short-term trajectories, instead of traditional binary silhouettes. The approach leverages advanced people detectors to create detailed spatial configurations around the person, capturing rich gait motion. Local motion features, combined using Fisher Vector encoding, result in a high-level gait descriptor called Pyramidal Fisher Motion. The method is validated on multiple datasets (CASIA, TUM GAID, CMU MoBo, and AVA Multiview Gait), achieving state-of-the-art results in recognizing individuals across various conditions such as different viewpoints, clothing, speeds, and walking paths.es_ES
dc.identifier.citationInternational Journal of Pattern Recognition and Artificial Intelligence, Volumen 31, Número 01, Páginas 1756002es_ES
dc.identifier.doi10.1142/S021800141756002X
dc.identifier.urihttps://hdl.handle.net/10630/32712
dc.language.isoenges_ES
dc.publisherWorld Scientifices_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectArquitectura de ordenadoreses_ES
dc.subject.otherGait recognitiones_ES
dc.subject.otherMultiple viewpointses_ES
dc.subject.otherMotiones_ES
dc.subject.otherDense trajectorieses_ES
dc.subject.otherFisher vectorses_ES
dc.titleFisher Motion Descriptor for Multiview Gait Recognition.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationbed8ca48-652e-4212-8c3c-05bfdc85a378
relation.isAuthorOfPublication.latestForDiscoverybed8ca48-652e-4212-8c3c-05bfdc85a378

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PFM_IJPRAI2016.pdf
Size:
10.65 MB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal

Collections