Mapping the global design space of nanophotonic components using machine learning pattern recognition

dc.contributor.authorMelati, Daniele
dc.contributor.authorGrinberg, Yuri
dc.contributor.authorKamandar Dezfouli, Mohsen
dc.contributor.authorJanz, Siegfried
dc.contributor.authorCheben, Pavel
dc.contributor.authorSchmid, Jens H.
dc.contributor.authorSánchez-Postigo, Alejandro
dc.contributor.authorXu, Dan-Xia
dc.date.accessioned2024-09-26T17:32:04Z
dc.date.available2024-09-26T17:32:04Z
dc.date.issued2019-10-21
dc.departamentoIngeniería de Comunicaciones
dc.description.abstractNanophotonics finds ever broadening applications requiring complex components with many parameters to be simultaneously designed. Recent methodologies employing optimization algorithms commonly focus on a single performance objective, provide isolated designs, and do not describe how the design parameters influence the device behaviour. Here we propose and demonstrate a machine-learning-based approach to map and characterize the multi-parameter design space of nanophotonic components. Pattern recognition is used to reveal the relationship between an initial sparse set of optimized designs through a significant reduction in the number of characterizing parameters. This defines a design sub-space of lower dimensionality that can be mapped faster by orders of magnitude than the original design space. The behavior for multiple performance criteria is visualized, revealing the interplay of the design parameters, highlighting performance and structural limitations, and inspiring new design ideas. This global perspective on high-dimensional design problems represents a major shift in modern nanophotonic design and provides a powerful tool to explore complexity in next-generation devices.es_ES
dc.identifier.citationMelati, D., Grinberg, Y., Kamandar Dezfouli, M. et al. Mapping the global design space of nanophotonic components using machine learning pattern recognition. Nat Commun 10, 4775 (2019). https://doi.org/10.1038/s41467-019-12698-1es_ES
dc.identifier.doi10.1038/s41467-019-12698-1
dc.identifier.urihttps://hdl.handle.net/10630/33538
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectNanofotónicaes_ES
dc.subject.othersilicon photonicses_ES
dc.subject.othersurface grating couplerses_ES
dc.subject.othersubwavelength grating metamaterialses_ES
dc.subject.othermachine learninges_ES
dc.titleMapping the global design space of nanophotonic components using machine learning pattern recognitiones_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467-019-12698-1.pdf
Size:
1.88 MB
Format:
Adobe Portable Document Format
Description:

Collections