Enhanced Cellular Detection Using Convolutional Neural Networks and Sliding Window Super-Resolution Inference.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorGarcía Aguilar, Iván
dc.contributor.authorRostyslav, Zavoiko
dc.contributor.authorFernández-Rodríguez, Jose David
dc.contributor.authorLuque-Baena, Rafael Marcos
dc.contributor.authorLópez-Rubio, Ezequiel
dc.date.accessioned2024-07-22T06:39:13Z
dc.date.available2024-07-22T06:39:13Z
dc.date.issued2024
dc.departamentoLenguajes y Ciencias de la Computación
dc.descriptionPolítica de acceso abierto tomada de: https://www.springernature.com/gp/open-research/policies/book-policieses_ES
dc.description.abstractHistopathology currently serves as the standard for breast cancer diagnosis, but its manual execution demands time and expertise from pathologists. Artificial intelligence, particularly in digital pathology, has made significant strides, offering new opportunities for precision and efficiency in disease diagnosis. This study presents a methodology to enhance cell nuclei detection in breast cancer histopathological images using convolutional neural network models to apply super-resolution and object detection. Several model architectures are explored, and their performance is evaluated regarding accuracy and sensitivity. The results affirm the potential of the proposed approach for automated cell nuclei identification. These AI advancements in digital pathology open avenues for early and precise cancer detection, influencing clinical practices and patient well-being and improving diagnostic efficiency.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.doi10.1007/978-3-031-61137-7_5
dc.identifier.urihttps://hdl.handle.net/10630/32260
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.eventdateJune 4–7, 2024es_ES
dc.relation.eventplaceOlhâo, Portugales_ES
dc.relation.eventtitle10th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2024es_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectRedes neuronales (Informática)es_ES
dc.subjectCáncer - Investigaciónes_ES
dc.subject.otherConvolutional neural networkses_ES
dc.subject.otherSuper-resolutiones_ES
dc.subject.otherObject detectiones_ES
dc.subject.otherNucleies_ES
dc.subject.otherCancer diagnosises_ES
dc.titleEnhanced Cellular Detection Using Convolutional Neural Networks and Sliding Window Super-Resolution Inference.es_ES
dc.typeconference outputes_ES
dc.type.hasVersionAM
dspace.entity.typePublication
relation.isAuthorOfPublication15881531-a431-477b-80d6-532058d8377c
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublication.latestForDiscovery15881531-a431-477b-80d6-532058d8377c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
IWINAC_ROSTYSLAV.pdf
Size:
8.55 MB
Format:
Adobe Portable Document Format
Description: