Real-Time odor classification through sequential bayesian filtering

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

The classification of volatiles substances with an e-nose is still a challenging problem, particularly when working under real-time, out-of-the-lab environmental conditions where the chaotic and highly dynamic characteristics of the gas transportation induce an almost permanent transient state in the e-nose readings. In this work, a sequential Bayesian filtering approach is proposed to efficiently integrate information from previous e-nose observations while updating the belief about the gas class on a real-time basis. We validate our proposal with two real olfaction datasets composed of dynamic time-series experiments (gas transitions are Considered, but no mixture of gases), showing an improvement in the classification rate when compared to a stand-alone probabilistic classifier.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by