Ruler and compass constructions of the equilateral triangle and pentagon in the lemniscate curve.

dc.contributor.authorGómez-Molleda, María de los Ángeles
dc.contributor.authorLario, Joan-C.
dc.date.accessioned2025-10-23T10:40:23Z
dc.date.available2025-10-23T10:40:23Z
dc.date.issued2019-04-25
dc.description.abstractA classical theorem of Abel on regular N-gons in the lemniscate curve mimics the analogous result of Gauss for the circle. In both cases, one gets the same criterion: the regular N-gons constructible with ruler and compass are those with number of sides N = 2^v· p_1 · · · p_r, where p_i are distinct Fermat primes. The hands-on drawing of such regular polygons with ruler and compass in the circle case is fairly well-known (at least when N is small). Here we present the practical constructions for the regular triangle and pentagon in the lemniscate case.es_ES
dc.description.sponsorshipMTM2015-66180-Res_ES
dc.identifier.citationMath Intelligencer 41, 17–21 (2019)es_ES
dc.identifier.doi10.1007/s00283-019-09892-w
dc.identifier.urihttps://hdl.handle.net/10630/40427
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectFunciones elípticases_ES
dc.subjectCurvas algebraicases_ES
dc.subjectGeometríaes_ES
dc.subject.otherRuler and compasses_ES
dc.subject.otherLemniscatees_ES
dc.subject.otherJacobi sine functiones_ES
dc.titleRuler and compass constructions of the equilateral triangle and pentagon in the lemniscate curve.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication56e6e50f-1849-4c39-afcb-5e771046377f
relation.isAuthorOfPublication.latestForDiscovery56e6e50f-1849-4c39-afcb-5e771046377f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The_Mathematical_Intelligencer___Lemniscate_I.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format
Description:

Collections