Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes

dc.centroFacultad de Cienciases_ES
dc.contributor.authorThybert, David
dc.contributor.authorRoller, Masa
dc.contributor.authorParronchi Navarro, Fabio Cassarotti
dc.contributor.authorFiddes, Ian
dc.contributor.authorStreeter, Ian
dc.contributor.authorFeig, Christine
dc.contributor.authorMartín-Gálvez, David
dc.contributor.authorKolmogorov, Mikhail
dc.contributor.authorJanousek, Vaclav
dc.contributor.authorAkanni, Wasiu
dc.contributor.authorAken, Bronwen
dc.contributor.authorAldridge, Sarah
dc.contributor.authorChakrapani, Varshith
dc.contributor.authorChow, William
dc.contributor.authorClarke, Laura
dc.contributor.authorCummins, Carla
dc.contributor.authorDoran, Anthony
dc.contributor.authorDunn, Matthew
dc.contributor.authorGoodstadt, Leo
dc.contributor.authorHowe, Kerstin
dc.contributor.authorHowell, Matthew
dc.contributor.authorJosselin, Ambre-Aurore
dc.contributor.authorKarn, Robert C
dc.contributor.authorLaukaitis, Christina M
dc.contributor.authorJingtao, Lilue
dc.contributor.authorMartin, Fergal J.
dc.contributor.authorMuffato, Matthieu
dc.contributor.authorNachtweide, Stefanie
dc.contributor.authorQuail, Michael A
dc.contributor.authorSisu, Cristina
dc.contributor.authorStanke, Mario
dc.contributor.authorStefflova, Klara
dc.contributor.authorVan Oosterhout, Cock
dc.contributor.authorVeyrunes, Frederic
dc.contributor.authorWard, Ben Joseph
dc.contributor.authorYang, Fengtang
dc.contributor.authorYazdanifar, Golbahar
dc.contributor.authorZadissa, Amonida
dc.contributor.authorAdams, David J
dc.contributor.authorBrazma, Alvis
dc.contributor.authorGerstein, Mark
dc.contributor.authorPaten, Benedict
dc.contributor.authorPham, Son
dc.contributor.authorKeane, Thomas M
dc.contributor.authorOdom, Duncan T
dc.contributor.authorFlicek, Paul
dc.date.accessioned2025-01-29T12:21:28Z
dc.date.available2025-01-29T12:21:28Z
dc.date.issued2018
dc.departamentoBiología Animal
dc.description.abstractUnderstanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, weidentified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology.es_ES
dc.description.sponsorshipThis project was supported by the Wellcome Trust (grant numbers WT108749/Z/15/Z, WT098051, WT202878/Z/16/Z, and WT202878/B/16/Z), the National Human Genome Research Institute (U41HG007234), Cancer Research UK (20412), the European Research Council (615584), the Biotechnology and Biological Sciences Research Council (BB/N02317X/a), and the European Molecular Biology Laboratory. The research leading to these results has received funding from the European Community’s Seventh FrameworkProgramme(FP7/2010-2014)undergrant agreement244356(NextGen)andfromtheEuropeanUnion’sSeventh Framework Programme (FP7/2007–2013) under grant agreement HEALTH-F4-2010-241504 (EURATRANS). We thank the genomics, bioinformatics, and BRU cores at the CRUK Cambridge Institute for technical support, the sequencing facilities at the Wellcome Sanger Institute, and computational support from EMBL-EBI and WSI as well as the Conservatoire Génétique de la Souris Sauvage (ISEM, France) and Plateforme Cytogénomique évolutive of the LabEx CeMEB.WealsothankBeeLingN, Beiyuan Fu, Sandra Louzada, and Mark Simmonds for assistance in chromosome sorting, chromosome painting, and array painting.es_ES
dc.identifier.citationGenome Res. April 2018 28: 448-459; Published in Advance March 21, 2018, doi:10.1101/gr.234096.117es_ES
dc.identifier.doi10.1101/gr.234096.117
dc.identifier.urihttps://hdl.handle.net/10630/37291
dc.language.isoenges_ES
dc.publisherCold Spring Harbor Laboratory Presses_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectGenomases_ES
dc.subjectCromosomases_ES
dc.subject.otherGenome evolutiones_ES
dc.subject.otherRepetitive elementses_ES
dc.subject.otherComparative genomicses_ES
dc.subject.otherPhylogeneticses_ES
dc.subject.otherRodent specieses_ES
dc.titleRepeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomeses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Genome Res.-2018-Thybert-448-59.pdf
Size:
3.9 MB
Format:
Adobe Portable Document Format
Description:

Collections