Parallel multiprocessing and scheduling on the heterogeneous Xeon+FPGA platform.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorRodríguez-Moreno, Andrés
dc.contributor.authorGonzález-Navarro, María Ángeles
dc.contributor.authorAsenjo-Plaza, Rafael
dc.contributor.authorCorbera-Peña, Francisco Javier
dc.contributor.authorGran-Tejero, Rubén
dc.contributor.authorSuárez Gracia, Darío
dc.contributor.authorNúñez-Yáñez, José
dc.date.accessioned2025-11-05T12:10:48Z
dc.date.available2025-11-05T12:10:48Z
dc.date.issued2020
dc.departamentoArquitectura de Computadoreses_ES
dc.description.abstractHerogeneous computing that exploits simultaneous co-processing with different device types has been shown to be effective at both increasing performance and reducing energy consumption. In this paper, we extend a scheduling framework encapsulated in a high-level C++ template and previously developed for heterogeneous chips comprising CPU and GPU cores, to new high-performance platforms for the data center, which include a cache coherent FPGA fabric and many-core CPU resources. Our goal is to evaluate the suitability of our framework with these new FPGA-based platforms, identifying performance benefits and limitations.We target the state-of-the-art HARP processor that includes 14 high-end Xeon classes tightly coupled to a FPGA device located in the same package. We select eight benchmarks from the high-performance computing domain that have been ported and optimized for this heterogeneous platform. The results show that a dynamic and adaptive scheduler that exploits simultaneous processing among the devices can improve performance up to a factor of 8 × compared to the best alternative solutions that only use the CPU cores or the FPGA fabric. Moreover, our proposal achieves up to 15% and 37% of improvement compared to the best heterogeneous solutions found with a dynamic and static schedulers, respectively.es_ES
dc.identifier.citationRodríguez, A., Navarro, A., Asenjo, R. et al. Parallel multiprocessing and scheduling on the heterogeneous Xeon+FPGA platform. J Supercomput 76, 4645–4665 (2020)es_ES
dc.identifier.doi10.1007/s11227-019-02935-1
dc.identifier.urihttps://hdl.handle.net/10630/40606
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectComputación heterogéneaes_ES
dc.subjectArquitectura de ordenadoreses_ES
dc.subject.otherHeterogeneous architecturees_ES
dc.subject.otherHeterogeneous schedulinges_ES
dc.subject.otherFPGAes_ES
dc.subject.otherParallel_for templatees_ES
dc.subject.otherHybrid algorithmes_ES
dc.subject.otherAdaptive chunk sizees_ES
dc.titleParallel multiprocessing and scheduling on the heterogeneous Xeon+FPGA platform.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationb215fbc9-d0f2-4bbb-a17c-e6055e984f68
relation.isAuthorOfPublication0857b903-5728-47c9-b298-a203bf081d23
relation.isAuthorOfPublication6ea008bf-69ee-4104-a942-2033b5b07ab8
relation.isAuthorOfPublication8ab59ac8-5b1b-4235-8f6c-b69120dc89e1
relation.isAuthorOfPublication.latestForDiscoveryb215fbc9-d0f2-4bbb-a17c-e6055e984f68

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Parallel_Multiprocessing_and_Scheduling_on_HARP.pdf
Size:
753.36 KB
Format:
Adobe Portable Document Format
Description:
versión aceptada del artículo
Download

Description: versión aceptada del artículo

Collections