Parallel multiprocessing and scheduling on the heterogeneous Xeon+FPGA platform.
| dc.centro | E.T.S.I. Informática | es_ES |
| dc.contributor.author | Rodríguez-Moreno, Andrés | |
| dc.contributor.author | González-Navarro, María Ángeles | |
| dc.contributor.author | Asenjo-Plaza, Rafael | |
| dc.contributor.author | Corbera-Peña, Francisco Javier | |
| dc.contributor.author | Gran-Tejero, Rubén | |
| dc.contributor.author | Suárez Gracia, Darío | |
| dc.contributor.author | Núñez-Yáñez, José | |
| dc.date.accessioned | 2025-11-05T12:10:48Z | |
| dc.date.available | 2025-11-05T12:10:48Z | |
| dc.date.issued | 2020 | |
| dc.departamento | Arquitectura de Computadores | es_ES |
| dc.description.abstract | Herogeneous computing that exploits simultaneous co-processing with different device types has been shown to be effective at both increasing performance and reducing energy consumption. In this paper, we extend a scheduling framework encapsulated in a high-level C++ template and previously developed for heterogeneous chips comprising CPU and GPU cores, to new high-performance platforms for the data center, which include a cache coherent FPGA fabric and many-core CPU resources. Our goal is to evaluate the suitability of our framework with these new FPGA-based platforms, identifying performance benefits and limitations.We target the state-of-the-art HARP processor that includes 14 high-end Xeon classes tightly coupled to a FPGA device located in the same package. We select eight benchmarks from the high-performance computing domain that have been ported and optimized for this heterogeneous platform. The results show that a dynamic and adaptive scheduler that exploits simultaneous processing among the devices can improve performance up to a factor of 8 × compared to the best alternative solutions that only use the CPU cores or the FPGA fabric. Moreover, our proposal achieves up to 15% and 37% of improvement compared to the best heterogeneous solutions found with a dynamic and static schedulers, respectively. | es_ES |
| dc.identifier.citation | Rodríguez, A., Navarro, A., Asenjo, R. et al. Parallel multiprocessing and scheduling on the heterogeneous Xeon+FPGA platform. J Supercomput 76, 4645–4665 (2020) | es_ES |
| dc.identifier.doi | 10.1007/s11227-019-02935-1 | |
| dc.identifier.uri | https://hdl.handle.net/10630/40606 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Springer | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Computación heterogénea | es_ES |
| dc.subject | Arquitectura de ordenadores | es_ES |
| dc.subject.other | Heterogeneous architecture | es_ES |
| dc.subject.other | Heterogeneous scheduling | es_ES |
| dc.subject.other | FPGA | es_ES |
| dc.subject.other | Parallel_for template | es_ES |
| dc.subject.other | Hybrid algorithm | es_ES |
| dc.subject.other | Adaptive chunk size | es_ES |
| dc.title | Parallel multiprocessing and scheduling on the heterogeneous Xeon+FPGA platform. | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | AM | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | b215fbc9-d0f2-4bbb-a17c-e6055e984f68 | |
| relation.isAuthorOfPublication | 0857b903-5728-47c9-b298-a203bf081d23 | |
| relation.isAuthorOfPublication | 6ea008bf-69ee-4104-a942-2033b5b07ab8 | |
| relation.isAuthorOfPublication | 8ab59ac8-5b1b-4235-8f6c-b69120dc89e1 | |
| relation.isAuthorOfPublication.latestForDiscovery | b215fbc9-d0f2-4bbb-a17c-e6055e984f68 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Parallel_Multiprocessing_and_Scheduling_on_HARP.pdf
- Size:
- 753.36 KB
- Format:
- Adobe Portable Document Format
- Description:
- versión aceptada del artículo
Description: versión aceptada del artículo

