U-Net/ResNet-50 Network with Transfer Learning for Semantic Segmentation in Search and Rescue.

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorSalas Espinales, Andrés
dc.contributor.authorVélez-Chávez, Elián
dc.contributor.authorVázquez-Martín, Ricardo
dc.contributor.authorGarcía-Cerezo, Alfonso José
dc.contributor.authorMandow, Anthony
dc.date.accessioned2025-01-22T13:23:15Z
dc.date.available2025-01-22T13:23:15Z
dc.date.issued2024-04-27
dc.departamentoInstituto Universitario de Investigación en Ingeniería Mecatrónica y Sistemas Ciberfísicos
dc.descriptionhttps://www.springernature.com/gp/open-science/policies/book-policieses_ES
dc.description.abstractSemantic segmentation has been successfully adopted for scenarios such as indoor, outdoor, urban scenes, and synthetic scenes, but applications with scarce labeled data such as search-and-rescue (SAR), have not been addressed. In this work, we propose a transfer learning approach where the U-Net convolutional neural network incorporates ResNet-50 as an encoder for the segmentation of objects in SAR situations. First, the proposed model is trained and validated with 19 classes of the CityScapes dataset. Then we test the proposed approach by i) training the model with a set of 14 Cityscapes classes with relevant similarities to SAR classes, and ii) using transfer learning with the self-developed dataset in SAR scenarios, which has 349 semantic labeled SAR images. The results indicate good recognition in classes with significant presence on the training images.es_ES
dc.description.sponsorshipThis work has been partially funded by the Ministerio de Ciencia, Innovación y Universidades, Gobierno de España, project {\small PID2021-122944OB-I00}. The first author received a grant from Asociación Universitaria Iberoamericana de Postgrado (AUIP), Universidad de Málaga, and Universidad Técnica de Manabí.es_ES
dc.identifier.citationSalas-Espinales A., Vélez-Chávez E., Vázquez-Martín R., García-Cerezo A., Mandow A. U-Net/ResNet-50 Network with Transfer Learning for Semantic Segmentation in Search and Rescue (2024) Lecture Notes in Networks and Systems, 978 LNNS, pp. 244 - 255 DOI: https://www.doi.org/10.1007/978-3-031-59167-9_21es_ES
dc.identifier.doi10.1007/978-3-031-59167-9_21
dc.identifier.urihttps://hdl.handle.net/10630/36759
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectRescatees_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherSemantic segmentationes_ES
dc.subject.otherTransfer learninges_ES
dc.subject.otherSearch and rescuees_ES
dc.subject.otherDatasetes_ES
dc.titleU-Net/ResNet-50 Network with Transfer Learning for Semantic Segmentation in Search and Rescue.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication14beb91d-691d-46e6-b1fc-aa7eddbc04ee
relation.isAuthorOfPublication111d26c1-efd3-4b8a-a05b-420a796580e0
relation.isAuthorOfPublication5f0a1dda-1e55-4bcd-b78a-7af23b346a79
relation.isAuthorOfPublication.latestForDiscovery14beb91d-691d-46e6-b1fc-aa7eddbc04ee

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Salas-Espinales-ROBOT-2022-AcceptedVersion.pdf
Size:
550.79 KB
Format:
Adobe Portable Document Format
Description:
Accepted Manuscript Version of a proceedings paper from the Fifth Iberian Robotics Conference ROBOT 2022
Download

Description: Accepted Manuscript Version of a proceedings paper from the Fifth Iberian Robotics Conference ROBOT 2022

Collections