Leveraging SYCL for Heterogeneous cDTW Computation on CPU, GPU, and FPGA
| dc.contributor.author | Campos Ferrer, Cristian | |
| dc.contributor.author | Asenjo-Plaza, Rafael | |
| dc.contributor.author | Hormigo-Aguilar, Javier | |
| dc.contributor.author | González-Navarro, María Ángeles | |
| dc.date.accessioned | 2025-06-17T10:52:51Z | |
| dc.date.available | 2025-06-17T10:52:51Z | |
| dc.date.issued | 2025-06-08 | |
| dc.departamento | Arquitectura de Computadores | es_ES |
| dc.description.abstract | One of the most time-consuming kernels of a recent epileptic seizure detection application is the computation of the constrained Dynamic Time Warping (cDTW) Distance Matrix. In this paper, we explore the design space of heterogeneous CPU, GPU, and FPGA implementations of this kernel using SYCL as a programming model. First, we optimize the CPU implementation leveraging the SIMD capability of SYCL and compare it with the latest C++26 SIMD library. Next, we tune the SYCL code to run on an on-chip GPU, iGPU, as well as on a discrete NVIDIA GPU, dGPU. We also develop a SYCL implementation on an Intel FPGA. On top of that, we exploit simultaneous co-processing on CPU+GPU and CPU+FPGA platforms by extending a previous heterogeneous scheduling framework to now support 2D partitioning strategies. Our evaluations demonstrate that SYCL seems well suited to exploit the SIMD capabilities of modern CPU cores and shows promising results for accelerating devices, both in terms of performance and energy efficiency. Moreover, we find that our scheduler enables the efficient co-execution of work among the computing devices, and the results demonstrate that dynamic and adaptive partitioning strategies perform efficiently with overheads below 4%. | es_ES |
| dc.description.sponsorship | Funding for open access charge: Universidad de Málaga / CBUA | es_ES |
| dc.identifier.citation | Campos, C., Asenjo, R., Hormigo, J., & Navarro, A. (2025). Leveraging SYCL for Heterogeneous cDTW Computation on CPU, GPU, and FPGA. Concurrency and Computation: Practice and Experience, 37(15–17). | es_ES |
| dc.identifier.doi | 10.1002/cpe.70142 | |
| dc.identifier.issn | 1532-0626 | |
| dc.identifier.uri | https://hdl.handle.net/10630/39025 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Wiley | es_ES |
| dc.rights | Atribución-NoComercial 4.0 Internacional | * |
| dc.rights.accessRights | open access | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
| dc.subject | Computación heterogénea | es_ES |
| dc.subject | Arquitectura de ordenadores | es_ES |
| dc.subject | Energía - Consumo | es_ES |
| dc.subject | Matrices lógicas programables por el usuario | es_ES |
| dc.subject.other | cDTW | es_ES |
| dc.subject.other | Energy efficiency | es_ES |
| dc.subject.other | FPGA | es_ES |
| dc.subject.other | GPU | es_ES |
| dc.subject.other | Heterogeneous architecture | es_ES |
| dc.subject.other | Heterogeneous scheduling | es_ES |
| dc.subject.other | SIMD | es_ES |
| dc.subject.other | SYCL | es_ES |
| dc.title | Leveraging SYCL for Heterogeneous cDTW Computation on CPU, GPU, and FPGA | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | VoR | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 6ea008bf-69ee-4104-a942-2033b5b07ab8 | |
| relation.isAuthorOfPublication | 236484d7-a8d7-4e3e-9023-5a01b84c9d5d | |
| relation.isAuthorOfPublication | 0857b903-5728-47c9-b298-a203bf081d23 | |
| relation.isAuthorOfPublication.latestForDiscovery | 6ea008bf-69ee-4104-a942-2033b5b07ab8 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Concurrency and Computation - 2025 - Campos - Leveraging SYCL for Heterogeneous cDTW Computation on CPU GPU and FPGA.pdf
- Size:
- 3.17 MB
- Format:
- Adobe Portable Document Format
- Description:

