Leveraging SYCL for Heterogeneous cDTW Computation on CPU, GPU, and FPGA

dc.contributor.authorCampos Ferrer, Cristian
dc.contributor.authorAsenjo-Plaza, Rafael
dc.contributor.authorHormigo-Aguilar, Javier
dc.contributor.authorGonzález-Navarro, María Ángeles
dc.date.accessioned2025-06-17T10:52:51Z
dc.date.available2025-06-17T10:52:51Z
dc.date.issued2025-06-08
dc.departamentoArquitectura de Computadoreses_ES
dc.description.abstractOne of the most time-consuming kernels of a recent epileptic seizure detection application is the computation of the constrained Dynamic Time Warping (cDTW) Distance Matrix. In this paper, we explore the design space of heterogeneous CPU, GPU, and FPGA implementations of this kernel using SYCL as a programming model. First, we optimize the CPU implementation leveraging the SIMD capability of SYCL and compare it with the latest C++26 SIMD library. Next, we tune the SYCL code to run on an on-chip GPU, iGPU, as well as on a discrete NVIDIA GPU, dGPU. We also develop a SYCL implementation on an Intel FPGA. On top of that, we exploit simultaneous co-processing on CPU+GPU and CPU+FPGA platforms by extending a previous heterogeneous scheduling framework to now support 2D partitioning strategies. Our evaluations demonstrate that SYCL seems well suited to exploit the SIMD capabilities of modern CPU cores and shows promising results for accelerating devices, both in terms of performance and energy efficiency. Moreover, we find that our scheduler enables the efficient co-execution of work among the computing devices, and the results demonstrate that dynamic and adaptive partitioning strategies perform efficiently with overheads below 4%.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUAes_ES
dc.identifier.citationCampos, C., Asenjo, R., Hormigo, J., & Navarro, A. (2025). Leveraging SYCL for Heterogeneous cDTW Computation on CPU, GPU, and FPGA. Concurrency and Computation: Practice and Experience, 37(15–17).es_ES
dc.identifier.doi10.1002/cpe.70142
dc.identifier.issn1532-0626
dc.identifier.urihttps://hdl.handle.net/10630/39025
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectComputación heterogéneaes_ES
dc.subjectArquitectura de ordenadoreses_ES
dc.subjectEnergía - Consumoes_ES
dc.subjectMatrices lógicas programables por el usuarioes_ES
dc.subject.othercDTWes_ES
dc.subject.otherEnergy efficiencyes_ES
dc.subject.otherFPGAes_ES
dc.subject.otherGPUes_ES
dc.subject.otherHeterogeneous architecturees_ES
dc.subject.otherHeterogeneous schedulinges_ES
dc.subject.otherSIMDes_ES
dc.subject.otherSYCLes_ES
dc.titleLeveraging SYCL for Heterogeneous cDTW Computation on CPU, GPU, and FPGAes_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication6ea008bf-69ee-4104-a942-2033b5b07ab8
relation.isAuthorOfPublication236484d7-a8d7-4e3e-9023-5a01b84c9d5d
relation.isAuthorOfPublication0857b903-5728-47c9-b298-a203bf081d23
relation.isAuthorOfPublication.latestForDiscovery6ea008bf-69ee-4104-a942-2033b5b07ab8

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Concurrency and Computation - 2025 - Campos - Leveraging SYCL for Heterogeneous cDTW Computation on CPU GPU and FPGA.pdf
Size:
3.17 MB
Format:
Adobe Portable Document Format
Description:

Collections