Accurate Stereo Visual Odometry with Gamma Distributions
| dc.centro | E.T.S.I. Informática | es_ES |
| dc.contributor.author | Gómez-Ojeda, Rubén | |
| dc.contributor.author | Moreno-Dueñas, Francisco Ángel | |
| dc.contributor.author | González-Jiménez, Antonio Javier | |
| dc.date.accessioned | 2017-07-26T07:33:02Z | |
| dc.date.available | 2017-07-26T07:33:02Z | |
| dc.date.created | 2017 | |
| dc.date.issued | 2017 | |
| dc.departamento | Ingeniería de Sistemas y Automática | |
| dc.description.abstract | Point-based stereo visual odometry systems typically estimate the camera motion by minimizing a cost function of the projection residuals between consecutive frames. Under some mild assumptions, such minimization is equivalent to maximizing the probability of the measured residuals given a certain pose change, for which a suitable model of the error distribution (sensor model) becomes of capital importance in order to obtain accurate results. This paper proposes a robust probabilistic model for projection errors, based on real world data. For that, we argue that projection distances follow Gamma distributions, and hence, the introduction of these models in a probabilistic formulation of the motion estimation process increases both precision and accuracy. Our approach has been validated through a series of experiments with both synthetic and real data, revealing an improvement in accuracy while not increasing the computational burden. | es_ES |
| dc.description.sponsorship | Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Project "PROMOVE: Advances in mobile robotics for promoting independent life of elders", funded by the Spanish Government and the "European Regional Development Fund ERDF" under contract DPI2014-55826-R. | es_ES |
| dc.identifier.orcid | http://orcid.org/0000-0003-3845-3497 | es_ES |
| dc.identifier.uri | http://hdl.handle.net/10630/14376 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | IEEE | es_ES |
| dc.relation.eventdate | May, 2017 | es_ES |
| dc.relation.eventplace | Singapore | es_ES |
| dc.relation.eventtitle | IEEE International Conference on Robotics and Automation (ICRA) | es_ES |
| dc.rights | by-nc-nd | |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Campo visual | es_ES |
| dc.subject.other | visual odometry | es_ES |
| dc.subject.other | SLAM | es_ES |
| dc.subject.other | Stereo vision | es_ES |
| dc.title | Accurate Stereo Visual Odometry with Gamma Distributions | es_ES |
| dc.type | conference output | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 076da759-602d-4c06-b766-134605f27098 | |
| relation.isAuthorOfPublication | 3000ee8d-0551-4a25-b568-d5c0a93117b2 | |
| relation.isAuthorOfPublication.latestForDiscovery | 076da759-602d-4c06-b766-134605f27098 |
Files
Original bundle
1 - 1 of 1

