Towards using Few-Shot Prompt Learning for Automating Model Completion

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorBenChaaben, Meriem
dc.contributor.authorBurgueño-Caballero, Lola
dc.contributor.authorSahraoui, Houari
dc.date.accessioned2024-02-09T16:27:49Z
dc.date.available2024-02-09T16:27:49Z
dc.date.issued2023
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.description.abstractWe propose a simple yet a novel approach to improve completion in domain modeling activities. Our approach exploits the power of large language models by using few-shot prompt learning without the need to train or fine-tune those models with large datasets that are scarce in this field. We implemented our approach and tested it on the completion of static and dynamic domain diagrams. Our initial evaluation shows that such an approach is effective and can be integrated in different ways during the modeling activities.es_ES
dc.identifier.citationM. B. Chaaben, L. Burgueño and H. Sahraoui, "Towards using Few-Shot Prompt Learning for Automating Model Completion," 2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), Melbourne, Australia, 2023, pp. 7-12, doi: 10.1109/ICSE-NIER58687.2023.00008es_ES
dc.identifier.doi10.1109/ICSE-NIER58687.2023.00008
dc.identifier.urihttps://hdl.handle.net/10630/30332
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectIngeniería del softwarees_ES
dc.subject.otherLanguage modelses_ES
dc.subject.otherFew-shot learninges_ES
dc.subject.otherPrompt learninges_ES
dc.subject.otherDomain modelinges_ES
dc.subject.otherModel completiones_ES
dc.titleTowards using Few-Shot Prompt Learning for Automating Model Completiones_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication31808e70-d2ec-4318-8ead-dded38954d40
relation.isAuthorOfPublication.latestForDiscovery31808e70-d2ec-4318-8ead-dded38954d40

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ICSE_NIER_23___Model_autocompletion (2).pdf
Size:
356.77 KB
Format:
Adobe Portable Document Format
Description:
Preprint
Download

Description: Preprint

Collections