Proton conductivity properties of novel tin(II) phosphonates
Loading...
Files
Description: Abstract
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Share
Center
Department/Institute
Keywords
Abstract
Metal phosphonates (MPs), a subclass of coordination polymers, may exhibit acidic groups such as P-OH, SO3H, COOH, N+-H, etc. Combining these features with interesting metals make them highly appealing in the field of fuel cells and electrolysers as potential proton conductors [1,2].
In this communication, we report the synthesis, characterization, and proton conduction properties of a series of Sn2+ hydroxyphosphonoacetates with a different water content, obtained at RT, 80 ºC and 150 ºC. The anhydrous 150 ºC-synthesized phase crystallizes in the monoclinic system, s.g. P 21/n. Its crystal structure, solved ab initio from laboratory powder X-ray diffraction data, is composed of distorted pyramidal Sn2+ polyhedra connected through the oxygen atoms from the phosphonate, hydroxyl, and carboxylic groups of the ligand (Figure 1). The proton conductivity was found to increase with the water content. A study of the possible effect of hydrated amorphous phases on proton conductivity is underway.
Description
Bibliographic citation
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional












