CPU and GPU oriented optimizations for LiDAR data processing

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorMuñoz, Felipe
dc.contributor.authorAsenjo-Plaza, Rafael
dc.contributor.authorNavarro, Ángeles
dc.contributor.authorCabaleiro, J. Carlos
dc.date.accessioned2024-05-28T08:38:53Z
dc.date.available2024-05-28T08:38:53Z
dc.date.issued2024-07
dc.departamentoArquitectura de Computadores
dc.description.abstractDigital Terrain Models (DTM) can be accurately obtained from clouds of LiDAR points but the corresponding cloud processing time can be prohibitive. This paper describes several optimization techniques that have been applied to the Overlap Window Method (OWM) that is a key component in DTM applications. OWM was originally implemented in R which translates into serious limitations in terms of the size of the LiDAR point cloud that can be processed. We have ported the code to C++, significantly optimized the data structure to minimize memory accesses, and developed parallel implementations for CPU and GPU commodity devices using oneAPI libraries and tools. This results in CPU and GPU versions that are up to 19x and 83x faster, respectively, than an OpenMP baseline that uses eight CPU cores. Most importantly, the proposed optimizations for CPU and GPU can be paramount to get the most out of other LiDAR-based algorithms in which the careful selection of the right data structure, parallelization strategies and memory access reduction techniques will certainly result in significant performance improvements.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málag / CBUAes_ES
dc.identifier.citationMuñoz, Felipe , Asenjo, Rafael , Navarro Angeles , Cabaleiro J. Carlos. (2024). CPU and GPU oriented optimizations for LiDAR data processing, Journal of Computational Science, Volume 79, 2024, 102317, ISSN 1877-7503es_ES
dc.identifier.doi/10.1016/j.jocs.2024.102317
dc.identifier.urihttps://hdl.handle.net/10630/31410
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectRadar ópticoes_ES
dc.subjectOrdenadores - Memoriases_ES
dc.subject.otherLiDAR data processinges_ES
dc.subject.otherDigital Terrain Modeles_ES
dc.subject.otherTree data structureses_ES
dc.subject.otherParallel optimizationes_ES
dc.subject.otherGPUes_ES
dc.subject.otherSYCLes_ES
dc.subject.otherCUDAes_ES
dc.subject.otheroneAPIes_ES
dc.titleCPU and GPU oriented optimizations for LiDAR data processinges_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication6ea008bf-69ee-4104-a942-2033b5b07ab8
relation.isAuthorOfPublication.latestForDiscovery6ea008bf-69ee-4104-a942-2033b5b07ab8

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S1877750324001108-main.pdf
Size:
2.58 MB
Format:
Adobe Portable Document Format
Description:

Collections