A deep learning LSTM-based approach for forecasting annual pollen curves: Olea and Urticaceae pollen types as a case study

dc.centroFacultad de Cienciases_ES
dc.contributor.authorPicornell Rodríguez, Antonio
dc.contributor.authorHurtado-Requena, Sandro José
dc.contributor.authorAntequera-Gómez, María Luisa
dc.contributor.authorBarba-González, Cristóbal
dc.contributor.authorRuiz-Mata, Rocío
dc.contributor.authorDe Gálvez-Montañez, Enrique
dc.contributor.authorRecio-Criado, María Marta
dc.contributor.authorTrigo-Pérez, María del Mar
dc.contributor.authorAldana-Montes, José Francisco
dc.contributor.authorNavas-Delgado, Ismael
dc.date.accessioned2024-01-31T09:31:54Z
dc.date.available2024-01-31T09:31:54Z
dc.date.issued2023-11-16
dc.departamentoBotánica y Fisiología Vegetal
dc.description.abstractAirborne pollen can trigger allergic rhinitis and other respiratory diseases in the synthesised population, which makes it one of the most relevant biological contaminants. Therefore, implementing accurate forecast systems is a priority for public health. The current forecast models are generally useful, but they falter when long time series of data are managed. The emergence of new computational techniques such as the LSTM algorithms could constitute a significant improvement for the pollen risk assessment. In this study, several LSTM variants were applied to forecast monthly pollen integrals in Málaga (southern Spain) using meteorological variables as predictors. Olea and Urticaceae pollen types were modelled as proxies of different annual pollen curves, using data from the period 1992–2022. The aims of this study were to determine the LSTM variants with the highest accuracy when forecasting monthly pollen integrals as well as to compare their performance with the traditional pollen forecast methods. The results showed that the CNN-LSTM were the most accurate when forecasting the monthly pollen integrals for both pollen types. Moreover, the traditional forecast methods were outperformed by all the LSTM variants. These findings highlight the importance of implementing LSTM models in pollen forecasting for public health and research applications.es_ES
dc.description.sponsorshipFunding for open Access charge: Universidad de Málaga / CBUA. This work has been partially funded by the Spanish Ministry of Science and Innovation via grant (funded by MCIN/AEI/10.13039/5011 00011033/) PID2020-112540RB-C41, AETHER-UMA (A smart data holistic approach for context-aware data analytics: semantics and context exploitation), and grant ‘‘Environmental and Biodiversity Climate Change Lab (EnBiC2-Lab)’’ LIFEWATCH-2019-11-UMA-01 (AEI/FEDER, UE). A. Picornell has been supported by a postdoctoral grant financed by the Consejería de Transformación Económica, Industria, Conocimiento 𝑦 Universidades (Junta de Andalucía, POSTDOC_21_00056).es_ES
dc.identifier.citationAntonio Picornell, Sandro Hurtado, María Luisa Antequera-Gómez, Cristóbal Barba-González, Rocío Ruiz-Mata, Enrique de Gálvez-Montañez, Marta Recio, María del Mar Trigo, José F. Aldana-Montes, Ismael Navas-Delgado, A deep learning LSTM-based approach for forecasting annual pollen curves: Olea and Urticaceae pollen types as a case study, Computers in Biology and Medicine, Volume 168, 2024, 107706, ISSN 0010-4825, https://doi.org/10.1016/j.compbiomed.2023.107706es_ES
dc.identifier.doi10.1016/j.compbiomed.2023.107706
dc.identifier.urihttps://hdl.handle.net/10630/29461
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFisiología vegetales_ES
dc.subjectBotánicaes_ES
dc.subjectPolenes_ES
dc.subject.otherPollen predictiones_ES
dc.subject.otherLSTMes_ES
dc.subject.otherRandom forestes_ES
dc.subject.otherNeural networkes_ES
dc.titleA deep learning LSTM-based approach for forecasting annual pollen curves: Olea and Urticaceae pollen types as a case studyes_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication7edba7f8-0dbe-48b9-b16c-8cfde49a9a1b
relation.isAuthorOfPublicatione8971462-20b8-442f-aeea-797c6233b905
relation.isAuthorOfPublication76cab825-eb2c-4be2-9851-77b168a11950
relation.isAuthorOfPublication20e62d4c-bfe2-4534-9b48-21faf912a208
relation.isAuthorOfPublication7eac9d6a-0152-4268-8207-ea058c82e531
relation.isAuthorOfPublication4e298ef9-8825-4aa8-be87-ac0f8adbf1b7
relation.isAuthorOfPublication.latestForDiscovery7edba7f8-0dbe-48b9-b16c-8cfde49a9a1b

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S001048252301171X-main.pdf
Size:
2.27 MB
Format:
Adobe Portable Document Format
Description:

Collections