Exploring multiprocessor approaches to time series analysis

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorQuislant-del-Barrio, Ricardo
dc.contributor.authorGutiérrez-Carrasco, Eladio Damián
dc.contributor.authorPlata-González, Óscar Guillermo
dc.date.accessioned2024-02-14T10:58:32Z
dc.date.available2024-02-14T10:58:32Z
dc.date.issued2024-02-08
dc.departamentoArquitectura de Computadores
dc.description.abstractA time series is a chronologically ordered set of samples of a real-valued variable that can have millions of observations. Time series analysis seeks extracting models in a large variety of domains [31] such as epidemiology, DNA analysis, economics, geophysics, speech recognition, etc. Particularly, motif [4] (similarity) and discord [13] (anomaly) discovery has become one of the most frequently used primitives in time series data mining [20], [2], [32], [7], [34], [1]. It poses the problem of solving the all-pairs-similarity-search (also known as similarity join). Specifically, given a time series broken down into subsequences, retrieve the most similar subsequences (motifs) and the most different ones (discords). One of the state-of-the-art methods for motif and discord discovery is Matrix Profile [35]. It solves the similarity join problem and allows time-manageable computation of very large time series. In this work, we focus on this technique, which features the possibility of detecting similarities, anomalies, and predicting outcomes. It provides full joins without the need for specifying a similarity threshold, which is a very challenging task in this domain. The matrix profile is another time series representing the minimum distance subsequence for each subsequence in the time series (motifs). Maximum distance values of the profile highlight the most dissimilar subsequences (discords).es_ES
dc.description.sponsorshipFunding for open Access charge: Universidad de Málaga / CBUA. This work has been supported by the Spanish Government under projects PID2019-105396RB-I00 and PID2022-136575OB-I00.es_ES
dc.identifier.citationRicardo Quislant, Eladio Gutierrez, Oscar Plata, Exploring multiprocessor approaches to time series analysis, Journal of Parallel and Distributed Computing, Volume 188, 2024, 104855, ISSN 0743-7315, https://doi.org/10.1016/j.jpdc.2024.104855es_ES
dc.identifier.doi10.1016/j.jpdc.2024.104855
dc.identifier.urihttps://hdl.handle.net/10630/30443
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectArquitectura de ordenadoreses_ES
dc.subjectAnálisis de series temporaleses_ES
dc.subjectOrdenadores - Memoriases_ES
dc.subject.otherTime series analysises_ES
dc.subject.otherMatrix profilees_ES
dc.subject.otherHardware transactional memoryes_ES
dc.subject.otherShared-memory parallelismes_ES
dc.subject.otherIntel Restricted Transactional Memory (RTM)es_ES
dc.titleExploring multiprocessor approaches to time series analysises_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationc6edf3ab-5134-4c07-943b-bfca90d13f34
relation.isAuthorOfPublicationf3eeec7d-5b4e-4ca9-abad-3cb620f46252
relation.isAuthorOfPublication34b85e22-88ce-4035-a53e-2bafb0c3310b
relation.isAuthorOfPublication.latestForDiscoveryc6edf3ab-5134-4c07-943b-bfca90d13f34

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0743731524000194-main.pdf
Size:
1.87 MB
Format:
Adobe Portable Document Format
Description:

Collections