Testing exosomes as a treatment for posthemorrhagic hydrocephalus.

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

Germinal matrix hemorrhages and intraventricular hemorrhages (GMH/IVH) lead to posthemorrhagic hydrocephalus (PHH), a severe cause of morbidity and mortality in premature neonates. GMH/IVH disrupts the ependyma, which forms a physical and functional barrier between the brain parenchyma and the cerebrospinal fluid (CSF). CSF circulation and physiology is also affected by ependyma disruption. Thus, ependyma is a key target when designing PHH treatments. Despite this, hydrocephalus treatments are surgical and focused on alleviating ventricular pressure by draining CSF. No therapy is currently aimed to recover the ependyma. Nevertheless, bone marrow derived mesenchymal stem cells (MSCs) are known to be great agents when dealing with inflammation. Also, exosomes have proven to be promising tools when designing anti-inflammatory treatments. Therefore, gaining insight in the treating capabilities of MSCs exosomes in PHH can be valuable. Results Differential effects in edema progression and ependymal cells ciliogenesis are found when analyzing treatments with conditioned and non-conditioned exosomes in moderate PHH and severe PHH.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by