Counting semicopulas on finite structures

dc.contributor.authorBejines-López, Carlos
dc.contributor.authorOjeda Hernández, Manuel
dc.date.accessioned2024-09-25T07:46:05Z
dc.date.available2024-09-25T07:46:05Z
dc.date.issued2022
dc.departamentoMatemática Aplicada
dc.description.abstractSemicopulas are the operators chosen to model conjunction in the fuzzy/many-valued logics. In fact, a special kind of semicopula, called t-norm, is widely used in many applications of logic to engineering, computer science and fuzzy systems. The main result of this paper is the computation of the exact number of semicopulas that can be defined on a finite chain in terms of its length. The final formula is achieved via relating semicopulas with finite plane partitions.es_ES
dc.identifier.citationBejines, C., & Ojeda-Hernández, M. (2023). Counting semicopulas on finite structures. Fuzzy Sets and Systems, 462, 108405.es_ES
dc.identifier.doi10.1016/j.fss.2022.09.011
dc.identifier.urihttps://hdl.handle.net/10630/33147
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMatemáticas difusases_ES
dc.subject.otherSemicopulases_ES
dc.subject.otherT-normses_ES
dc.titleCounting semicopulas on finite structureses_ES
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationff27a270-c45a-4cf0-943d-37963e87efb2
relation.isAuthorOfPublication.latestForDiscoveryff27a270-c45a-4cf0-943d-37963e87efb2

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
semicopulas_preprint.pdf
Size:
467.99 KB
Format:
Adobe Portable Document Format
Description:

Collections