Data mining for municipal financial distress prediction
| dc.centro | Facultad de Ciencias Económicas y Empresariales | en_US |
| dc.contributor.author | Alaminos Aguilera, David | |
| dc.contributor.author | Fernández, David | |
| dc.contributor.author | García-Lopera, Francisca | |
| dc.contributor.author | Fernández, Manuel Ángel | |
| dc.date.accessioned | 2018-07-31T10:20:36Z | |
| dc.date.available | 2018-07-31T10:20:36Z | |
| dc.date.created | 2018 | |
| dc.date.issued | 2018-07-31 | |
| dc.departamento | Economía Aplicada (Matemáticas) | |
| dc.description.abstract | Data mining techniques are capable of extracting valuable knowledge from large and variable databases. This work proposes a data mining method for municipal financial distress prediction. Using a new proxy of municipal financial situation and a sample of 128 Spanish municipalities, the empirical experiment obtained satisfactory results, which testifies to the viability and validity of the data mining method proposed for municipal financial distress prediction. | en_US |
| dc.description.sponsorship | Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. | en_US |
| dc.identifier.uri | https://hdl.handle.net/10630/16388 | |
| dc.language.iso | eng | en_US |
| dc.relation.eventdate | 11-15 de Julio | en_US |
| dc.relation.eventplace | Nueva York. USA | en_US |
| dc.relation.eventtitle | 18th Industrial Conference on Data Mining ICDM 2018 | en_US |
| dc.rights.accessRights | open access | en_US |
| dc.subject | Minería de datos (Informática) | en_US |
| dc.subject.other | Financial distress prediction | en_US |
| dc.subject.other | Data mining | en_US |
| dc.subject.other | Municipalities | en_US |
| dc.subject.other | Individual classifiers | en_US |
| dc.subject.other | Local governments | en_US |
| dc.title | Data mining for municipal financial distress prediction | en_US |
| dc.type | conference output | en_US |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | ec29bdc6-ce5e-4a93-af51-a3db2209e894 | |
| relation.isAuthorOfPublication.latestForDiscovery | ec29bdc6-ce5e-4a93-af51-a3db2209e894 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Data mining for municipal financial distress prediction UMA.pdf
- Size:
- 21.35 KB
- Format:
- Adobe Portable Document Format
- Description:

