Littlewood-Paley Formulas and Carleson Measures forWeighted Fock Spaces Induced by A∞-Type Weights

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

We obtain Littlewood-Paley formulas for Fock spaces $\mathcal{F}^q_{\beta,\omega}$ induced by weights $\omega\in\Ainfty= \cup_{1\le p<\infty}A^{restricted}_{p}$, where $A^{restricted}_{p}$ is the class of weights such that the Bergman projection $P_\alpha$, on the classical Fock space $\mathcal{F}^2_{\alpha}$, is bounded on $$\mathcal{L}^p_{\alpha,\om}:=\left\{f:\, \int_{\C}|f(z)|^pe^{-p\frac{\a}{2}|z|^2}\,\om(z)dA(z)<\infty \right\}. $$ Using these equivalent norms for $\mathcal{F}^q_{\beta,\omega}$ we characterize the Carleson measures for weighted Fock-Sobolev spaces $\mathcal{F}^{q,n}_{\beta,\om}$.

Description

https://openpolicyfinder.jisc.ac.uk/id/publication/17444

Bibliographic citation

Potential Anal (2019) 50:221–244

Collections

Endorsement

Review

Supplemented By

Referenced by