On the automatic design of multi‑objective particle swarm optimizers: experimentation and analysis.
| dc.centro | E.T.S.I. Informática | es_ES |
| dc.contributor.author | Nebro-Urbaneja, Antonio Jesús | |
| dc.contributor.author | López-Ibáñez, Manuel | |
| dc.contributor.author | García-Nieto, José Manuel | |
| dc.contributor.author | Coello Coello, Carlos A. | |
| dc.date.accessioned | 2023-10-17T10:50:37Z | |
| dc.date.available | 2023-10-17T10:50:37Z | |
| dc.date.created | 2023 | |
| dc.date.issued | 2023-10-09 | |
| dc.departamento | Instituto de Tecnología e Ingeniería del Software de la Universidad de Málaga | |
| dc.description.abstract | Research in multi-objective particle swarm optimizers (MOPSOs) progresses by proposing one new MOPSO at a time. In spite of the commonalities among different MOPSOs, it is often unclear which algorithmic components are crucial for explaining the performance of a particular MOPSO design. Moreover, it is expected that different designs may perform best on different problem families and identifying a best overall MOPSO is a challenging task. We tackle this challenge here by: (1) proposing AutoMOPSO, a flexible algorithmic template for designing MOPSOs with a design space that can instantiate thousands of potential MOPSOs; and (2) searching for good-performing MOPSO designs given a family of training problems by means of an automatic configuration tool (irace). We apply this automatic design methodology to generate a MOPSO that significantly outperforms two state-of-the-art MOPSOs on four well-known bi-objective problem families. We also identify the key design choices and parameters of the winning MOPSO by means of ablation. FAutoMOPSO is publicly available as part of the jMetal framework. | es_ES |
| dc.description.sponsorship | Funding for open access charge: Universidad Málaga / CBUA. This work has been partially funded by the Spanish Ministry of Science and Innovation via Grant PID2020-112540RB-C41 (AEI/FEDER, UE). Carlos A. Coello Coello gratefully acknowledges support from CONACyT Grant No. 2016-01-1920 (Investigación en Fronteras de la Ciencia 2016) | es_ES |
| dc.identifier.citation | Nebro, A.J., López-Ibáñez, M., García-Nieto, J. et al. On the automatic design of multi-objective particle swarm optimizers: experimentation and analysis. Swarm Intell (2023). https://doi.org/10.1007/s11721-023-00227-2 | es_ES |
| dc.identifier.doi | 10.1007/s11721-023-00227-2 | |
| dc.identifier.uri | https://hdl.handle.net/10630/27853 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Springer Nature | es_ES |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.rights.accessRights | open access | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | Algoritmos computacionales | es_ES |
| dc.subject | Optimización matemática | es_ES |
| dc.subject | Benchmarking | es_ES |
| dc.subject | Calidad total | es_ES |
| dc.subject.other | Automatic algorithm design | es_ES |
| dc.subject.other | Multi-objective optimization | es_ES |
| dc.subject.other | Particle swarm optimization | es_ES |
| dc.subject.other | Benchmarking | es_ES |
| dc.title | On the automatic design of multi‑objective particle swarm optimizers: experimentation and analysis. | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | VoR | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | eddeb2e3-acaf-483e-bb13-cebb22c18413 | |
| relation.isAuthorOfPublication | 04a9ec70-bfda-4089-b4d7-c24dd0870d17 | |
| relation.isAuthorOfPublication.latestForDiscovery | eddeb2e3-acaf-483e-bb13-cebb22c18413 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s11721-023-00227-2.pdf
- Size:
- 2.47 MB
- Format:
- Adobe Portable Document Format
- Description:

