On the automatic design of multi‑objective particle swarm optimizers: experimentation and analysis.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorNebro-Urbaneja, Antonio Jesús
dc.contributor.authorLópez-Ibáñez, Manuel
dc.contributor.authorGarcía-Nieto, José Manuel
dc.contributor.authorCoello Coello, Carlos A.
dc.date.accessioned2023-10-17T10:50:37Z
dc.date.available2023-10-17T10:50:37Z
dc.date.created2023
dc.date.issued2023-10-09
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.description.abstractResearch in multi-objective particle swarm optimizers (MOPSOs) progresses by proposing one new MOPSO at a time. In spite of the commonalities among different MOPSOs, it is often unclear which algorithmic components are crucial for explaining the performance of a particular MOPSO design. Moreover, it is expected that different designs may perform best on different problem families and identifying a best overall MOPSO is a challenging task. We tackle this challenge here by: (1) proposing AutoMOPSO, a flexible algorithmic template for designing MOPSOs with a design space that can instantiate thousands of potential MOPSOs; and (2) searching for good-performing MOPSO designs given a family of training problems by means of an automatic configuration tool (irace). We apply this automatic design methodology to generate a MOPSO that significantly outperforms two state-of-the-art MOPSOs on four well-known bi-objective problem families. We also identify the key design choices and parameters of the winning MOPSO by means of ablation. FAutoMOPSO is publicly available as part of the jMetal framework.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad Málaga / CBUA. This work has been partially funded by the Spanish Ministry of Science and Innovation via Grant PID2020-112540RB-C41 (AEI/FEDER, UE). Carlos A. Coello Coello gratefully acknowledges support from CONACyT Grant No. 2016-01-1920 (Investigación en Fronteras de la Ciencia 2016)es_ES
dc.identifier.citationNebro, A.J., López-Ibáñez, M., García-Nieto, J. et al. On the automatic design of multi-objective particle swarm optimizers: experimentation and analysis. Swarm Intell (2023). https://doi.org/10.1007/s11721-023-00227-2es_ES
dc.identifier.doi10.1007/s11721-023-00227-2
dc.identifier.urihttps://hdl.handle.net/10630/27853
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAlgoritmos computacionaleses_ES
dc.subjectOptimización matemáticaes_ES
dc.subjectBenchmarkinges_ES
dc.subjectCalidad totales_ES
dc.subject.otherAutomatic algorithm designes_ES
dc.subject.otherMulti-objective optimizationes_ES
dc.subject.otherParticle swarm optimizationes_ES
dc.subject.otherBenchmarkinges_ES
dc.titleOn the automatic design of multi‑objective particle swarm optimizers: experimentation and analysis.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationeddeb2e3-acaf-483e-bb13-cebb22c18413
relation.isAuthorOfPublication04a9ec70-bfda-4089-b4d7-c24dd0870d17
relation.isAuthorOfPublication.latestForDiscoveryeddeb2e3-acaf-483e-bb13-cebb22c18413

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s11721-023-00227-2.pdf
Size:
2.47 MB
Format:
Adobe Portable Document Format
Description:

Collections