Enhanced Deep Style Interpreter for Automatic Synthesis of Annotated Medical Images.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorPacheco dos Santos Lima Junior, Marcos Sergio
dc.contributor.authorOrtiz-de-Lazcano-Lobato, Juan Miguel
dc.contributor.authorFernández-Rodríguez, Jose David
dc.contributor.authorLópez-Rubio, Ezequiel
dc.date.accessioned2025-08-29T10:15:27Z
dc.date.available2025-08-29T10:15:27Z
dc.date.issued2025
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málagaes_ES
dc.departamentoLenguajes y Ciencias de la Computaciónes_ES
dc.descriptionSubido el AM a la espera de que se corrija un error en la versión publicada (petición 265/2025)es_ES
dc.description.abstractCreating an annotated medical image dataset is challenging and traditionally reliant on labor-intensive manual annotations. Additionally, these datasets often present substantial imbalances regarding sensing devices, class of medical disorders, and patient ethnicity and phenotype. Recently, there has been a research interest in mitigating these issues by employing data augmentation with generative models. However, the quality of images and semantics in medical image datasets are critical for computer vision tasks such as image segmentation. This paper presents DatasetGAN2-ADA, which aims to mitigate these difficulties by presenting an innovative deep-style interpreter robust against anomalous synthesis and designed to automate annotated image generation entirely. By leveraging the capabilities of StyleGAN2-ADA with an improved architecture of DatasetGAN and an enhanced execution framework integrated with an anomaly detector based on custom features, we propose a combined strategy for eliminating flawed synthetic images and masks. Furthermore, we propose exploiting image projections and preexisting semantics, eliminating the need for manual annotations to train our deep-style interpreter. The experimental results obtained with a magnetic resonance image (MRI) dataset demonstrate that DatasetGAN2-ADA is strongly effective in improving the efficiency and quality of synthetic generation, rejecting the synthesis of a substantial amount of low-quality images and masks. Then, an extension of this method is evaluated for detecting anomalous latent vectors a priori of the image synthesis, achieving up to 95.24% precision and illustrating its compelling potential for practical applications in medical imaging.es_ES
dc.identifier.citationPacheco dos Santos Lima Junior, M.S., Ortiz-de-Lazcano-Lobato, J.M., Fernández-Rodríguez, J.D. et al. Enhanced deep-style interpreter for automatic synthesis of annotated medical images. Neural Comput & Applic (2025).es_ES
dc.identifier.doi10.1007/s00521-025-11516-8
dc.identifier.urihttps://hdl.handle.net/10630/39705
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectRedes neuronales artificialeses_ES
dc.subjectAprendizaje automaticoes_ES
dc.subjectVisión por ordenadores_ES
dc.subjectSistemas de imágenes en medicinaes_ES
dc.subjectReconocimiento de formas (Informática)es_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherGenerative adversarial networkes_ES
dc.subject.othersemi-supervised learninges_ES
dc.subject.otherSemantic segmentationes_ES
dc.titleEnhanced Deep Style Interpreter for Automatic Synthesis of Annotated Medical Images.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication5d96d5b2-9546-44c8-a1b3-1044a3aee34f
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublication.latestForDiscovery5d96d5b2-9546-44c8-a1b3-1044a3aee34f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Enhanced Deep Style Interpreter for Automatic Synthesis of Annotated Medical Images.pdf
Size:
5.39 MB
Format:
Adobe Portable Document Format
Description:

Collections