A coevolutionary algorithm for tyre model parameters identification.

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorCabrera-Carrillo, Juan Antonio
dc.contributor.authorOrtiz-Fernández, Antonio
dc.contributor.authorEstébanez-Campos, María Belén
dc.contributor.authorNadal-Martínez, Fernando
dc.contributor.authorSimón-Mata, Antonio
dc.date.accessioned2025-01-22T13:08:44Z
dc.date.available2025-01-22T13:08:44Z
dc.date.issued2010
dc.departamentoIngeniería Mecánica, Térmica y de Fluidos
dc.descriptionhttps://openpolicyfinder.jisc.ac.uk/id/publication/8240es_ES
dc.description.abstractThe problem of tyre model coefficients identification using minimum test data is studied in this work. To obtain these tyre model parameters, an intense research effort by the automotive community has been made and there are different methods to fit the values of these parameters. This problem is addressed in this work through a coevolutionary algorithm that interactively searches the optimum tyre model parameters and new test data in disagreement with the tyre model. The algorithm is composed of two stages: the estimation phase, which finds out the tyre model parameters which can predict actual tyre test data, and the exploration phase, which finds out new test data which have the most disagreement with the response of the current model. The feasibility of the methodology is demonstrated comparing the obtained results with other known techniques.es_ES
dc.identifier.citationCabrera, J.A., Ortiz, A., Estebanez, B. et al. A coevolutionary algorithm for tyre model parameters identification. Struct Multidisc Optim 41, 749–763 (2010). https://doi.org/10.1007/s00158-009-0446-5es_ES
dc.identifier.doi10.1007/S00158-009-0446-5
dc.identifier.urihttps://hdl.handle.net/10630/36758
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectAlgoritmos genéticoses_ES
dc.subject.otherOptimizationes_ES
dc.subject.otherGenetic algorithmses_ES
dc.titleA coevolutionary algorithm for tyre model parameters identification.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication2c50a2bd-cff0-4ae1-a333-183439902173
relation.isAuthorOfPublication78c4b676-70bb-4662-b980-a6ebd729859d
relation.isAuthorOfPublication1000321b-951e-4b30-b9e1-081e747f3b0f
relation.isAuthorOfPublication107d1693-14af-44b8-950f-5bfe32bd45e6
relation.isAuthorOfPublication6fb71a6f-debd-41a1-b2b6-95d767ec5383
relation.isAuthorOfPublication.latestForDiscovery2c50a2bd-cff0-4ae1-a333-183439902173

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
StructuralMultidisciplinaryOptimization.pdf
Size:
880.78 KB
Format:
Adobe Portable Document Format
Description:

Collections