From seismography to compressed sensing and back: a brief history of optimization-based signal processing

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Authors

Fernández Granda, Carlos

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Keywords

Abstract

In this talk we provide an overview of the history of l1-norm minimization applied to underdetermined inverse problems. In the 70s and 80s geophysicists proposed using l1-norm minimization for deconvolution from bandpass data in reflection seismography. In the 2000s, inspired by this approach and by magnetic resonance imaging, a method to provably recover sparse signals from random projections, known as compressed sensing, was developed. Theoretical insights used to analyze compressed sensing have recently been adapted to understand the potential and limitations of l1-norm minimization for deterministic problems. These include super-resolution from low-pass data and the deconvolution problem that originally motivated the geophysicists.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by