Optimizing cement kiln operation with expert systems
| dc.centro | Escuela de Ingenierías Industriales | es_ES |
| dc.contributor.author | Fernández Gassó, Raimundo | |
| dc.contributor.author | Sevilla-Hurtado, Lorenzo | |
| dc.contributor.author | Cañero-Nieto, Juan Miguel | |
| dc.date.accessioned | 2025-12-18T07:48:01Z | |
| dc.date.available | 2025-12-18T07:48:01Z | |
| dc.date.issued | 2025-09-20 | |
| dc.departamento | Ingeniería Civil, de Materiales y Fabricación | es_ES |
| dc.description | https://openpolicyfinder.jisc.ac.uk/id/publication/13456 | es_ES |
| dc.description.abstract | The optimization of cement kilns presents a significant challenge for the industry, where achieving operational efficiency and sustainability is paramount. This study introduces a Kiln Expert System (KES) that leverages symbolic artificial intelligence (AI), real-time data analysis, and adaptive algorithms to dynamically stabilize key variables such as calciner temperature and oxygen levels. By incorporating a higher proportion of alternative fuels (ATFs), KES not only reduces variable costs, but also minimizes the carbon footprint and strengthens the competitive positioning of operations. Deployed in a facility with a five-stage preheater and a multistage calciner, the KES fine-tunes combustion parameters in real time to maintain high production standards, improve performance, and adapt to changing operational conditions. This innovative approach demonstrates how AI-driven systems can transform process management by enabling precise control, optimizing resource use, and aligning industrial practices with environmental goals. | es_ES |
| dc.identifier.citation | Fernández Gassó, Raimundo, Lorenzo Sevilla Hurtado, and Juan Miguel Cañero-Nieto. "Optimizing cement kiln operation with expert systems." The International Journal of Advanced Manufacturing Technology (2025): 1-13. | es_ES |
| dc.identifier.doi | 10.1007/s00170-025-16489-5 | |
| dc.identifier.uri | https://hdl.handle.net/10630/41190 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Springer Nature | es_ES |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.rights.accessRights | embargoed access | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | Hornos de cemento | es_ES |
| dc.subject | Industria del cemento | es_ES |
| dc.subject.other | Expert systems | es_ES |
| dc.subject.other | Advanced process control (APC) | es_ES |
| dc.subject.other | Process optimization | es_ES |
| dc.subject.other | Cement industry | es_ES |
| dc.title | Optimizing cement kiln operation with expert systems | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | AM | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 8b510515-db31-4feb-b110-3db324ddf546 | |
| relation.isAuthorOfPublication | c7b91abf-4c03-4607-b052-72d48be3f7f9 | |
| relation.isAuthorOfPublication.latestForDiscovery | 8b510515-db31-4feb-b110-3db324ddf546 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2025-09 Accepted Manuscript.pdf
- Size:
- 1.12 MB
- Format:
- Adobe Portable Document Format
- Description:

