Formal concept analysis with negative attributes for forgery detection.

dc.contributor.authorOjeda-Aciego, Manuel
dc.contributor.authorRodríguez Jiménez, José Manuel
dc.date.accessioned2025-10-15T11:12:49Z
dc.date.available2025-10-15T11:12:49Z
dc.date.issued2020-07-13
dc.departamentoMatemática Aplicadaes_ES
dc.descriptionhttps://openpolicyfinder.jisc.ac.uk/id/publication/45517
dc.description.abstractEurope’s system of open frontiers, commonly known as “Schengen,” let people from different countries travel and cross the inner frontiers without problems. Different documents from these countries, not only European, can be found in road checkpoints and there is no international database to help Police forces to detect whether they are false or not. People who need a driver license to access to specific jobs, or a new identity because of legal problems, often contact forgers who provide false documents with different levels of authenticity. Governments and Police Forces should improve their methodologies, by ensuring that staff is increasingly better able to detect false or falsified documents through their examination, and follow patterns to detect and situate these forgers. In this work, we propose a method, based in formal concept analysis using negative attributes, which allows Police forces analyzing false documents and provides a guide to enforce the detection of forgers.es_ES
dc.identifier.citationManuel Ojeda-Aciego, José Manuel Rodríguez-Jiménez: Formal concept analysis with negative attributes for forgery detection. Comput. Math. Methods 3(6) (2021)es_ES
dc.identifier.doi10.1002/cmm4.1124
dc.identifier.urihttps://hdl.handle.net/10630/40248
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectLenguajes formaleses_ES
dc.subjectAnálisis lingüístico automáticoes_ES
dc.subjectDocumentos - Falsificacioneses_ES
dc.subject.otherFalse documentses_ES
dc.subject.otherForgeryes_ES
dc.subject.otherFormal concept analysises_ES
dc.subject.otherPattern recognitiones_ES
dc.titleFormal concept analysis with negative attributes for forgery detection.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication701e4bd1-e82c-4c17-b8bc-f1cd5688c8fb
relation.isAuthorOfPublication.latestForDiscovery701e4bd1-e82c-4c17-b8bc-f1cd5688c8fb

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cmm-2020-04-16.pdf
Size:
793.79 KB
Format:
Adobe Portable Document Format
Description:

Collections