Estimación de la capacidad en redes LTE mediante aprendizaje supervisado

dc.centroE.T.S.I. Telecomunicaciónen_US
dc.contributor.authorGijón-Martín, Carolina
dc.contributor.authorToril-Genovés, Matías
dc.contributor.authorLuna-Ramírez, Salvador
dc.contributor.authorBejarano-Luque, Juan Luis
dc.contributor.authorMarí-Altozano, María Luisa
dc.date.accessioned2020-09-04T09:03:18Z
dc.date.available2020-09-04T09:03:18Z
dc.date.created2020-09
dc.date.issued2020-09-04
dc.departamentoIngeniería de Comunicaciones
dc.description.abstractNetwork dimensioning is a critical task for cellular operators to avoid degraded user experience and unnecessary upgrades of network resources with changing mobile traffic patterns. For this purpose, smart network planning tools require accurate cell and user capacity estimates. In these tools, throughput is often used as a capacity metric due to its close relationship with user satisfaction. In this work, a comprehensive analysis is carried out to compare different Supervised Learning (SL) algorithms for estimating cell and user throughput in the Down Link (DL) in busy hours from radio measurements collected on a cell basis in the Operation Support System (OSS). To this end, a dataset with the most relevant performance indicators is collected from a Long Term Evolution (LTE) network. Results show that SL algorithms outperform classical multi-variable linear regression approach, achieving an average relative error lower than 10%from only 5 network indicators. kNN and RF show the best results for cell and uses throughput estimation, respectively, when considering the trade-off between model accuracy and storage capacity.en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Techen_US
dc.identifier.urihttps://hdl.handle.net/10630/19724
dc.language.isospaen_US
dc.relation.eventdate2/9/2020en_US
dc.relation.eventplaceMálaga (España)en_US
dc.relation.eventtitleURSI 2020en_US
dc.rights.accessRightsopen accessen_US
dc.subjectSistemas de comunicaciones móvilesen_US
dc.subjectSistemas de comunicaciones inalámbricosen_US
dc.subject.otherCapacidaden_US
dc.subject.otherLTEen_US
dc.subject.otherAprendizaje supervisadoen_US
dc.titleEstimación de la capacidad en redes LTE mediante aprendizaje supervisadoen_US
dc.typeconference outputen_US
dspace.entity.typePublication
relation.isAuthorOfPublication014c95aa-41da-4fb1-b41d-1e297ff0ecb6
relation.isAuthorOfPublicationc062c7f9-a73f-4f6e-8d25-d8258916a967
relation.isAuthorOfPublication.latestForDiscovery014c95aa-41da-4fb1-b41d-1e297ff0ecb6

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento_riuma_CarolinaGijon.pdf
Size:
7.11 KB
Format:
Adobe Portable Document Format
Description:
Descripción de la contribución
Download

Description: Descripción de la contribución