Towards the predictive analysis of cloud systems with e-Motions

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorDe Oliveira, Patricia
dc.contributor.authorMoreno-Delgado, Antonio
dc.contributor.authorDurán, Francisco
dc.contributor.authorPimentel-Sánchez, Ernesto
dc.date.accessioned2017-05-17T08:28:01Z
dc.date.available2017-05-17T08:28:01Z
dc.date.created2017
dc.date.issued2017-05-17
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractCurrent methods for the predictive analysis of software systems are not directly applicable on self-adaptive systems as cloud systems, mainly due to their complexity and dynamism. To tackle the difficulties to handle the dynamic changes in the systems and their environments, we propose using graph transformation to define an adaptive com- ponent model and analysis tools for it, what allows us to carry on such analyses on dynamic architectures. Specifically, we use the e-Motions system to define the Palladio component model, and simulation-based analysis tools for it. Adaptation mechanisms are then specified as generic adaptation rules. This setting will allow us to study different mechanisms for the management of dynamic systems and their adaptation mechanisms, and different QoS metrics to be considered in a dynamic environment.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.orcidhttp://orcid.org/0000-0002-7125-8434es_ES
dc.identifier.urihttp://hdl.handle.net/10630/13672
dc.language.isoenges_ES
dc.relation.eventdateMayo 2017es_ES
dc.relation.eventplaceBuenos Aires, Argentinaes_ES
dc.relation.eventtitleXX Iberoamerican Conference on Software Engineeringes_ES
dc.rightsby-nc-nd
dc.rights.accessRightsopen accesses_ES
dc.subjectAplicaciones informáticases_ES
dc.subject.otherCloud systemses_ES
dc.subject.otherPredictive analysises_ES
dc.subject.otherGraph-transformations systemses_ES
dc.titleTowards the predictive analysis of cloud systems with e-Motionses_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationf7124910-9352-463a-b344-f35ba814407f
relation.isAuthorOfPublication.latestForDiscoveryf7124910-9352-463a-b344-f35ba814407f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cibse2017.pdf
Size:
765.25 KB
Format:
Adobe Portable Document Format