Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HRþ)/HER2-negative advanced breast cancer patients.

dc.centroFacultad de Medicinaes_ES
dc.contributor.authorRibelles, Nuria
dc.contributor.authorJerez-Aragonés, José Manuel
dc.contributor.authorRodríguez-Brazzarola, Pablo
dc.contributor.authorJiménez-Rodríguez, Begoña
dc.contributor.authorDíaz-Redondo, Tamara
dc.contributor.authorMesa, Héctor
dc.contributor.authorMárquez, Antonia
dc.contributor.authorSánchez-Muñoz, Alfonso
dc.contributor.authorPajares, Bella
dc.contributor.authorCarabantes, Francisco
dc.contributor.authorBermejo-Pérez, María José
dc.contributor.authorVillar, Ester
dc.contributor.authorDomínguez-Recio, María Emilia
dc.contributor.authorSaez-Lara, Enrique
dc.contributor.authorGálvez Carvajal, Laura
dc.contributor.authorGodoy-Ortiz, Ana
dc.contributor.authorFranco, Leónardo
dc.contributor.authorRuiz-Medina, Sofía
dc.contributor.authorLópez, Irene
dc.contributor.authorAlba-Conejo, Emilio
dc.date.accessioned2024-05-10T08:13:21Z
dc.date.available2024-05-10T08:13:21Z
dc.date.issued2021
dc.departamentoMedicina y Dermatología
dc.descriptionEste artículo ha sido publicado en la revista European Journal of Cancer. Esta versión tiene Licencia Creative Commons CC-BY-NC-NDes_ES
dc.description.abstractBackground: CDK4/6 inhibitors plus endocrine therapies are the current standard of care in the first-line treatment of HRþ/HER2-negative metastatic breast cancer, but there are no well-established clinical or molecular predictive factors for patient response. In the era of personalised oncology, new approaches for developing predictive models of response are needed. Materials and methods: Data derived from the electronic health records (EHRs) of real-world patients with HRþ/HER2-negative advanced breast cancer were used to develop predictive models for early and late progression to first-line treatment. Two machine learning approaches were used: a classic approach using a data set of manually extracted features from reviewed (EHR) patients, and a second approach using natural language processing (NLP) of freetext clinical notes recorded during medical visits. Results: Of the 610 patients included, there were 473 (77.5%) progressions to first-line treatment, of which 126 (20.6%) occurred within the first 6 months. There were 152 patients (24.9%) who showed no disease progression before 28 months from the onset of first-line treatment. The best predictive model for early progression using the manually extracted dataset achieved an area under the curve (AUC) of 0.734 (95% CI 0.687e0.782). Using the NLP free-text processing approach, the best model obtained an AUC of 0.758 (95% CI 0.714 e0.800). The best model to predict long responders using manually extracted data obtained an AUC of 0.669 (95% CI 0.608e0.730). With NLP free-text processing, the best model attained an AUC of 0.752 (95% CI 0.705e0.799). Conclusions: Using machine learning methods, we developed predictive models for early and late progression to first-line treatment of HRþ/HER2-negative metastatic breast cancer, also finding that NLP-based machine learning models are slightly better than predictive models based on manually obtained data.es_ES
dc.identifier.citationRibelles N, Jerez JM, Rodriguez-Brazzarola P, Jimenez B, Diaz-Redondo T, Mesa H, Marquez A, Sanchez-Muñoz A, Pajares B, Carabantes F, Bermejo MJ, Villar E, Dominguez-Recio ME, Saez E, Galvez L, Godoy A, Franco L, Ruiz-Medina S, Lopez I, Alba E. Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HR+)/HER2-negative advanced breast cancer patients. Eur J Cancer. 2021 Feb;144:224-231. doi: 10.1016/j.ejca.2020.11.030. Epub 2020 Dec 26. PMID: 33373867.es_ES
dc.identifier.doi10.1016/j.ejca.2020.11.030
dc.identifier.urihttps://hdl.handle.net/10630/31244
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMamas - Cánceres_ES
dc.subjectProceso en lenguaje natural (Informática)es_ES
dc.subject.otherHormone receptor positivees_ES
dc.subject.otherCDK4/6-inhibitorses_ES
dc.subject.otherNatural language processinges_ES
dc.subject.otherElectronic health recordses_ES
dc.subject.otherBreast canceres_ES
dc.subject.otherMachine learninges_ES
dc.titleMachine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HRþ)/HER2-negative advanced breast cancer patients.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationb6f27291-58a9-4408-860c-12508516ff67
relation.isAuthorOfPublicationa2d651f3-b8d2-4a50-8365-f94faea30fca
relation.isAuthorOfPublicationf7a611d4-56e6-4eb6-b5f1-ff03a60e3451
relation.isAuthorOfPublication1e58df71-b337-4856-a5e8-02f8c2e8792b
relation.isAuthorOfPublication.latestForDiscoveryb6f27291-58a9-4408-860c-12508516ff67

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Machine learning EJC-D-20-02078R1 Clean Revised version (1).pdf
Size:
244.25 KB
Format:
Adobe Portable Document Format
Description:

Collections