Google Translate vs. DeepL: analysing neural machine translation performance under the challenge of phraseological variation.

dc.centroFacultad de Filosofía y Letrases_ES
dc.contributor.authorHidalgo Ternero, Carlos Manuel
dc.date.accessioned2024-09-29T09:29:59Z
dc.date.available2024-09-29T09:29:59Z
dc.date.issued2020
dc.departamentoTraducción e Interpretación
dc.description.abstractThe present research analyses the performance of two free open-source neural machine translation (NMT) systems —Google Translate and DeepL— in the (ES>EN) translation of somatisms such as tomar el pelo and meter la pata, their nominal variants (tomadura/tomada de pelo and metedura/metida de pata), and other lower-frequency variants such as meter la pata hasta el corvejón, meter la gamba and metedura/metida de gamba. The machine translation outcomes will be contrasted and classified depending on whether these idioms are presented in their continuous or discontinuous form (Anastasiou 2010), i.e., whether different n-grams split the idiomatic sequence (or not), which may pose some difficulties for their automatic detection and translation. Overall, the insights gained from this study will prove useful in determining for which of the different scenarios either Google Translate or DeepL delivers a better performance under the challenge of phraseological variation and discontinuity.es_ES
dc.identifier.citationHidalgo-Ternero, C. M. (2020). Google Translate vs. DeepL: analysing neural machine translation performance under the challenge of phraseological variation. En P. Mogorrón Huerta (Ed.), Multidisciplinary Analysis of the Phenomenon of Phraseological Variation in Translation and Interpreting. MonTI Special Issue 6, 154-177. https://doi.org/10.6035/MonTI.2020.ne6.5.es_ES
dc.identifier.doi10.6035/MonTI.2020.ne6.5
dc.identifier.urihttps://hdl.handle.net/10630/33912
dc.language.isoenges_ES
dc.publisherUniversidat Jaume Ies_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectTraducción automáticaes_ES
dc.subject.otherNeural Machine Translationes_ES
dc.subject.otherTraducción Automática Neuronales_ES
dc.subject.otherFraseologíaes_ES
dc.subject.otherPhraseologyes_ES
dc.subject.otherSomatismes_ES
dc.subject.otherSomatismoes_ES
dc.titleGoogle Translate vs. DeepL: analysing neural machine translation performance under the challenge of phraseological variation.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A.2.1_Artículo_GoogleTranslatevsDeepL.pdf
Size:
686.43 KB
Format:
Adobe Portable Document Format
Description:

Collections