Efficient Hill Climber for Multi-Objective Pseudo-Boolean Optimization

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

Local search algorithms and iterated local search algorithms are a basic technique. Local search can be a stand-alone search method, but it can also be hybridized with evolutionary algorithms. Recently, it has been shown that it is possible to identify improving moves in Hamming neighborhoods for k-bounded pseudo-Boolean optimization problems in constant time. This means that local search does not need to enumerate neighborhoods to find improving moves. It also means that evolutionary algorithms do not need to use random mutation as a operator, except perhaps as a way to escape local optima. In this paper, we show how improving moves can be identified in constant time for multiobjective problems that are expressed as k-bounded pseudo-Boolean functions. In particular, multiobjective forms of NK Landscapes and Mk Landscapes are considered.

Description

Chicano, F., Whitley D., & Tinós R. (2016). Efficient Hill Climber for Multi-Objective Pseudo-Boolean Optimization. 16th European Conference on Evolutionary Computation for Combinatorial Optimization (LNCS 9595), pp. 88-103

Bibliographic citation

Collections

Endorsement

Review

Supplemented By

Referenced by