Microbial profiling of a suppressiveness-induced agricultural soil amended with composted almond shells lead to isolation of new biocontrol agents

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

This study focused on the microbial profile present in an agricultural soil that becomes suppressive after the application of composted almond shells (AS) as organic amendments. The role of microbes in the suppression of Rosellinia necatrix, the causative agent of avocado white root rot, was determined after heat-treatment and complementation experiments with different types of soil. Bacterial and fungal profiles based on the 16S rRNA gene and ITS sequencing, the soil under the influence of composted almond shells revealed an increase in Proteobacteria and Ascomycota groups, as well as a reduction in Acidobacteria and Xylariales (where R. necatrix is allocated). Complementary to these findings, functional analysis by GeoChip 4.6 confirmed the improvement of a group of specific probes included in the “soil benefit” category was present only in AS-amended soils, corresponding to specific microorganisms previously described as potential biocontrol agents, such as Pseudomonas spp., Burkholderia spp. or Actinobacteria. Based in such data, a model for the microbial-based suppressiveness is proposed and further isolation of representative microorganisms were performed.

Description

Vida et al., 2016. Microbial profiling of a suppressiveness-induced agricultural soil amended with composted almond shells lead to isolation of new biocontrol agents. Biological and integrated control of plant pathogens IOBC-WPRS Bulletin Vol. 117, 2016 pp. 140-143

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by