Infill pattern strategy impact on the cross-sectional area at gauge length of material extrusion 3D printed polylactic acid parts

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorCañero-Nieto, Juan Miguel
dc.contributor.authorCampo Campo, Rafael José
dc.contributor.authorDíaz Bolaño, Idanis Beatriz
dc.contributor.authorAriza-Echeverri, Edwan
dc.contributor.authorDeluque-Toro, Críspulo
dc.contributor.authorSolano-Martos, José Francisco
dc.date.accessioned2025-12-02T10:12:52Z
dc.date.available2025-12-02T10:12:52Z
dc.date.issued2025-02-26
dc.departamentoIngeniería Civil, de Materiales y Fabricaciónes_ES
dc.description.abstractThis study aims to explore the impact of various infill patterns on the mechanical properties of 3D-printed polylactic acid (PLA) specimens, particularly focusing on the minimum cross-sectional area, which correlates with mechanical strength. A randomized controlled trial design was employed, testing four different infill patterns: concentric, gyroid, 3D honeycomb, and rays. Each pattern was printed in PLA using a standard material extrusion 3D printer. The specimens were subjected to tensile stress using a universal testing machine, following the ASTM D638-14 standard. The cross-sectional area at gauge length was calculated using the line-plane intersection method from GCODE analysis, highlighting the minimum cross-sectional area: the weakest sections theoretically prone to failure. This work involved testing specimens with varying infill patterns to determine their influence on the mechanical integrity and performance of the parts. The concentric infill pattern exhibited the highest relative line-plane intersection points (RLPI) and maintained minimal variability in mechanical properties across the sample size. Experimental results demonstrated that different infill patterns significantly affect tensile strength, with the concentric pattern providing the most favorable outcomes in terms of strength and reliability. The choice of infill pattern in material extrusion 3D printing of PLA significantly influences the mechanical properties, particularly the tensile strength and distribution of material within the cross-sectional area. The concentric pattern consistently outperformed other types in maintaining structural integrity under stress. These findings provide crucial insights for optimizing 3D printing settings to enhance the durability and performance of printed parts.es_ES
dc.identifier.citationCañero-Nieto, J.M., Campo-Campo, R.J., Díaz-Bolaño, I. et al. Infill pattern strategy impact on the cross-sectional area at gauge length of material extrusion 3D printed polylactic acid parts. J Intell Manuf (2025). https://doi.org/10.1007/s10845-025-02579-4es_ES
dc.identifier.doi10.1007/s10845-025-02579-4
dc.identifier.urihttps://hdl.handle.net/10630/40970
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAttribution 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectProcesos de fabricación - Innovaciones tecnológicases_ES
dc.subjectImpresión 3Des_ES
dc.subject.other3D printinges_ES
dc.subject.otherMaterial extrusiones_ES
dc.subject.otherPolylactid acides_ES
dc.subject.otherInfill patternses_ES
dc.subject.otherGcode analysises_ES
dc.titleInfill pattern strategy impact on the cross-sectional area at gauge length of material extrusion 3D printed polylactic acid partses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationc7b91abf-4c03-4607-b052-72d48be3f7f9
relation.isAuthorOfPublication7ecea308-c23a-48a2-beeb-ce3fcebfdd1d
relation.isAuthorOfPublication.latestForDiscoveryc7b91abf-4c03-4607-b052-72d48be3f7f9

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s10845-025-02579-4.pdf
Size:
5.74 MB
Format:
Adobe Portable Document Format
Description:

Collections