Neutron and synchrotron X-ray diffraction for understanding crack tip mechanics

Loading...
Thumbnail Image

Files

abstract anisotropy_02.pdf (84.94 KB)

Description: Abstract conferencia

Identifiers

Publication date

Reading date

Authors

Kelleher, J F

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Keywords

Abstract

The fatigue behaviour of polycrystalline metals is often studied through crack propagation analysis [1,2]. Nevertheless, understanding the mechanical processes that take place right at the crack tip [3,4] would also involve considering the deformation developing at the plastic zone and the contact between the crack faces over a portion of the loading cycle [5–7]. Paris law or newer models such as Forman equation are commonly used to interpret growth data [8], but cannot be used to generalise for complex loading scenarios, such as multiaxial loads [9–11] or variable amplitude loads [2]. Diffraction methods are a powerful tool to characterise crack tip strains and stresses [12]. The basics principles of neutron and synchrotron diffraction for measuring bulk properties are discussed [13,14], with special emphasis on grain size effects [15,16], transition between plane stress and plain strain conditions [17], measurement of the plastic zone and development of shielding effects at the crack tip [18]. REFERENCES [1] P. Lopez-Crespo, P.J. Withers, F. Yusof, H. Dai, A. Steuwer, J.F. Kelleher, T. Buslaps, Overload effects on fatigue crack-tip fields under plane stress conditions: surface and bulk analysis, Fatigue and Fracture of Engineering Materials and Structures. 36 (2013) 75–84. [2] B. Moreno, A. Martin, P. Lopez-Crespo, J. Zapatero, J. Dominguez, Estimations of fatigue life and variability under random loading in aluminum Al-2024T351 using strip yield models from NASGRO, International Journal of Fatigue. 91 (2016) 414–422. [3] C. Bathias, Retrospective view on the role of the plastic zone at a fatigue crack tip, Fatigue and Fracture of Engineering Materials and Structures. 19 (1996) 1301–1306. [4] P. Lopez-Crespo, D. Camas, F. V Antunes, J.R. Yates, A study of the evolution of crack tip plasticity along a crack front, Theoretical and Applied Fracture Mechanics. 98 (2018) 59–66.

Description

Conferencia invitada de Joseph F Kelleher

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by