LearnTA: Generación automática de autómatas temporizados mediante el aprendizaje de trazas.

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Sistedes

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Center

Abstract

El rápido avance de tecnologías, como la Inteligencia Artificial, está permitiendo el desarrollo de sistemas software muy sofisticados. Para la detección temprana de errores en estos sistemas es usual la construcción de modelos abstractos sobre los que se pueda razonar. Sin embargo, esta tarea de modelado se complica cuando lo ́único que puede observarse de los sistemas es su interacción con el entorno. En este trabajo, se presenta LearnTA, una herramienta de aprendizaje para la generación automática de modelos de sistemas (Systems Under Learning/SULs) a partir de la observación de su ejecución. Concretamente, la herramienta tiene como objetivo aprender sistemas reactivos cuya evolución puede depender del tiempo. LearnTA emplea un algoritmo de Automata Learning con aprendizaje pasivo. LearnTA utiliza el comportamiento observado del SUL que se quiere aprender para construir un modelo formal. El comportamiento observado del SUL está constituido por secuencias (trazas) de observaciones, cada una de las cuales tiene un evento de interacción del sistema con su entorno y su estado visible en un instante de tiempo. El modelo formal construido por LearnTA es un tipo especial de autómata de tiempo real determinista. Para evaluar LearnTA, se han realizado una serie de experimentos en los que los SULs son sistemas sintéticos de diferente tamaño. Asimismo, también se ha realizado una comparación con TAG, otro herramienta perteneciente al estado del arte.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional