Semantic 3D mapping from deep image segmentation

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Authors

Martin, Francisco
Gonzalez, Fernando
Guerrero, Jose Miguel
Fernandez-Carmona, Manuel
Gines, Jonatan

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

The perception and identification of visual stimuli from the environment is a fundamental capacity of autonomous mobile robots. Current deep learning techniques make it possible to identify and segment objects of interest in an image. This paper presents a novel algorithm to segment the object's space from a deep segmentation of an image taken by a 3D camera. The proposed approach solves the boundary pixel problem that appears when a direct mapping from segmented pixels to their correspondence in the point cloud is used. We validate our approach by comparing baseline approaches using real images taken by a 3D camera, showing that our method outperforms their results in terms of accuracy and reliability. As an application of the proposed algorithm, we present a semantic mapping approach for a mobile robot's indoor environments.

Description

Bibliographic citation

Collections

Endorsement

Review

Supplemented By

Referenced by